удалить( A, L, L) :-

 nonvar( A), !.

  % Переменная А уже конкретизирована

удалить( А, [А | L], L).

удалить( А, [В | L], [В | L1]) :-

 удалить( A, L, L1).

% Примеры ребусов

ребус1( [D, O, N, A, L, D],

 [G, E, R, A, L, D],

 [R, O, B, E, R, T].

ребус2( [0, S, E, N, D],

 [0, M, O, R, E],

 [M, O, N, E, Y].

Рис. 7.2.  Программа для арифметических ребусов.

Иногда этот ребус упрощают, сообщая часть решения в виде дополнительного ограничения, например D равно 5. В такой форме ребус можно передать пролог-системе при помощи сумма1:

?- сумма1( [5, O, N, A, L, 5],

 [G, E, R, A, L, 5],

 [R, O, B, E, R, T],

 0, 0, [0, 1, 2, 3, 4, 6, 7, 8, 9], _ ).

Интересно, что в обоих случаях существует только одно решение, т.е. только один способ заменить буквы цифрами.

Упражнения

7.1. Напишите процедуру упростить для упрощения алгебраических сумм, в которых участвуют числа и символы (строчные буквы). Пусть эта процедура переупорядочивает слагаемые так, чтобы символы предшествовали числам. Вот примеры ее использования:

?- упростить( 1 + 1 + а, E).

E = а + 2

?- упростить( 1 + a + 4 + 2 + b + с, E).

E = а + b + с + 7

?- упростить( 3 + x + x, E).

E = 2*x + 3

7.2. Определите процедуру

добавить( Элемент, Список)

для добавления нового элемента в список. Предполагается, что все элементы, хранящиеся в списке, — атомы. Список состоит из всех хранящихся в нем элементов, а за ними следует хвост, который не конкретизирован и служит для принятия новых элементов. Пусть, например, в списке уже хранятся а, b и с, тогда

Список = [а, b, с | Хвост]

где Хвост — переменная. Цель

добавить( d, Список)

вызовет конкретизацию

Xвoст = [d | НовыйХвост] и

Список = [а, b, с, d | НовыйХвост]

Таким способом структура может наращиваться, включая в себя новые элементы. Определите также соответствующее отношение принадлежности.

7.2. Создание и декомпозиция термов: =.., functor, arg, name

Имеются три встроенные предиката для декомпозиции и синтеза термов: functor, arg и =... Рассмотрим сначала отношение =.., которое записывается как инфиксный оператор. Цель

Терм =.. L

истинна, если L — список, начинающийся с главного функтора терма Терм, вслед за которым идут его аргументы. Вот примеры:

?- f( а, b) =.. L.

L = [f, а, b]

?- T =.. [прямоугольник, 3, 5].

T = прямоугольник( 3, 5)

?- Z =.. [p, X, f( X,Y) ].

Z = p( X, f( X,Y) )

Зачем может понадобиться разбирать терм на составляющие компоненты — функтор и его аргументы? Зачем создавать новый терм из заданного функтора и аргументов? Следующий пример показывает, что это действительно нужно.

Рассмотрим программу, которая манипулирует геометрическими фигурами. Фигуры — это квадраты, прямоугольники, треугольники, окружности в т.д. В программе их можно представлять в виде термов, функтор которых указывает на тип фигуры, а аргументы задают ее размеры:

квадрат( Сторона)

треугольник( Сторона1, Сторона2, Сторона3)

окружность( R)

Одной из операций над такими фигурами может быть увеличение. Его можно реализовать в виде трехаргументного отношения

увел( Фиг, Коэффициент, Фиг1)

где Фиг и Фиг1 — геометрические фигуры одного типа (с одним в тем же функтором), причем параметры Фиг1 равны параметрам Фиг, умноженным на Коэффициент. Для простоты будем считать, что все параметры Фиг, а также Коэффициент уже известны, т.е. конкретизированы числами. Один из способов программирования отношения увел таков:

увел( квадрат( A), F, квадрат( А1) ) :-

 A1 is F*A

увел( окружность( R), F, окружность( R1) ) :-

 R1 is F*R1

увел( прямоугольник( А, В), F, прямоугольник( А1, В1)) :-

 A1 is F*A, B1 is F*B.

Такая программа будет работать, однако она будет выглядеть довольно неуклюже при большом

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату