количестве различных типов фигур. Мы будем вынуждены заранее предвидеть все возможные типы, которые могут когда-либо встретиться. Придется заготовить по предложению на каждый тип, хотя во всех этих предложениях по существу говорится одно и то же: возьми параметры исходной фигуры, умножь их на коэффициент и создай фигуру того же типа с этими новыми параметрами.

Ниже приводится программа, в которой делается попытка (неудачная) справиться для начала хотя бы со всеми однопараметрическими фигурами при помощи одного предложения:

увел( Тип( Пар), F, Тип( Пар1) ):-

 Пар1 is F*Пар.

Однако в Прологе подобные конструкции, как правило, запрещены, поскольку функтор должен быть атомом, и, следовательно, переменная Тип синтаксически не будет воспринята как функтор. Правильный метод — воспользоваться предикатом '=..'. Тогда процедура увел будет иметь обобщенную формулировку, пригодную для фигур любых типов:

увел( Фиг, F, Фиг1):-

 Фиг =.. [Тип | Параметры],

 умножспис( Параметры, F, Параметры1),

 Фиг1 =.. [Тип | Параметры)].

умножспис( [], _, []).

умножспис( [X | L], F, [X1 | L1] ) :-

 X1 is F*X, умножспис( L, F, L1).

Наш следующий пример использования предиката '=..' связан с обработкой символьных выражений (формул), где часто приходится подставлять вместо некоторого подвыражения другое выражение. Мы определим отношение

подставить( Подтерм, Терм, Подтерм1, Терм1)

следующим образом: если все вхождения Подтерм'а в Терм заменить на Подтерм1, то получится Терм1. Например:

?- подставить( sin( x), 2*sin( x)*f( sin( x)), t, F ).

F = 2*t*f( t)

Под 'вхождением' Подтерм'а в Терм мы будем понимать такой элемент Терм'а, который сопоставим с Подтерм'ом. Вхождения будем искать сверху вниз. Поэтому цель

?- подставить( а+b, f( а, А+В), v, F).

даст результат

F = f( а, v)

А = а

В = b

а не

F = f( a, v + v)

А = а + b

В = а + b

При определении отношения подставить нам нужно рассмотреть несколько случаев и для каждого принять свое решение:

если Подтерм = Терм, то Терм1 = Подтерм1;

иначе если Терм — 'атомарный' (не структура),

 то Терм1 = Терм (подставлять нечего),

 иначе подстановку нужно выполнить над аргументами Tерм'a.

Эти правила можно превратить в программу, показанную на рис. 7.3.

Термы, полученные при помощи предиката '=..', разумеется, можно использовать и в качестве целей. Это дает возможность программе в процессе вычислений самой порождать и вычислять цели, структура которых не обязательно была известна заранее в момент написания программы. Последовательность целей, иллюстрирующая этот прием, могла бы выглядеть примерно так:

получить( Функтор),

 вычислить( Списарг),

 Цель =.. [Функтор | Списарг],

 Цель

Здесь получить и вычислить — некоторые определенные пользователем процедуры, предназначенные для вычисления компонент цели. После этого цель порождается предикатом '=..', а затем активизируется при помощи простого указания ее имени Цель.

% Отношение

%

% подставить( Подтерм, Терм, Подтерм1, Терм1)

%

% состоит в следующем: если все вхождения Подтерм'а в Терм

% заменить на Подтерм1, то получится Терм1.

% Случай 1: Заменить весь терм

подставить( Терм, Терм, Терм1, Терм1) :- !.

% Случай 2: нечего подставлять

подставить( _, Терм, _, Терм) :-

 atomic( Терм), !.

% Случай 3: Проделать подстановку в аргументах

подставить( Под, Терм, Под1, Терм1) :-

 Терм =.. [F | Арги],

  % Выделить аргументы

 подспис( Под, Арги, Под1, Арги1),

  % Выполнить над ними подстановку

 Терм1 =.. [F | Арги1].

подспис( Под, [Терм | Термы], Под1, [Терм1 | Термы1]) :-

 подставить( Под, Терм, Под1, Терм1),

 подспис( Под, Термы, Под1, Термы1).

Рис. 7.3.  Процедура подстановки в терм вместо одного из его подтермов некоторого другого подтерма.

Некоторые реализации Пролога могут содержать требование, чтобы все цели, появляющиеся в программе, по своей синтаксической форме были либо атомами, либо структурами с атомом в качестве главного функтора. Поэтому переменная, вне зависимости от ее текущей конкретизации, может по своей синтаксической форме не подойти в качестве цели. Эту трудность можно обойти при помощи еще одного встроенного предиката call (вызов), чьим аргументом является цель, подлежащая вычислению. В соответствий с этим предыдущий пример должен быть переписан так:

...

Цель = [Функтор | Списарг],

саll( Цель)

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату