Лобачевский показал, что это не так.
Все думали, что к любой кривой линии можно провести касательные. Вейерштрасс дал уравнение кривой, к которой невозможно провести касательную. Интуитивно, наглядно мы не можем представить себе такую кривую, но чисто логическим путем можно исследовать ее свойства.
Мы всегда думали, что целое больше части. Это положение казалось аксиомой и нередко приводилось как пример абсолютной истины. А вот Кантор показал, что в случае бесконечного множества это положение не работает.
1 2 3 4 5 6 7 8 9 10… - натуральный ряд чисел
1 4 9 16 25 36 49… - ряд квадратов
Оказалось, что квадратов в бесконечном ряду столько же, сколько и натуральных чисел, так как под каждым натуральным числом можно подписать его квадрат, или каждое натуральное число можно возвести в квадрат. Поэтому Кантор определил бесконечное множество, как имеющее части, содержащие столько же членов, как и все множество.
Все эти открытия потребовали гораздо более глубокого исследования и обоснования логических основ математики и перестройки нашего мышления. В прошлом математики охотно обращались к интуиции, к наглядному представлению и не только при формулировании исходных определений и аксиом, но и при доказательстве теорем. Так обстоит дело, в частности, у Евклида. Теперь оказалось, что интуиции далеко не всегда можно безоговорочно доверять. Были обнаружены серьезные логические промахи в самих «Началах Евклида».
Кроме того, математика в новое время развивалась настолько быстро, что сами математики не успевали осмыслить свои открытия. Они пользовались новыми методами, потому что те давали хорошие результаты, но не всегда заботились об их строгом логическом обосновании. Оказалось, что математика пользуется некоторыми весьма неясными понятиями. Так называемое исчисление бесконечно малых блестяще себя оправдало, но, что такое «бесконечно малая величина», никто толком сказать не мог.
Больше того, оказалось, что определить предмет математики, указать, чем именно она занимается, невероятно трудно. Старое традиционное определение математики, как науки о количестве, было признано неудовлетворительным. Б. Пирс определил математику как «науку, которая выводит необходимые заключения». Гамильтон и Де-Морган — как «науку о чистом пространстве и времени». Дело кончилось тем, что Рассел дал свою парадоксальную характеристику математике, сказав, что это «доктрина, в которой мы никогда не знаем, ни о чем мы говорим, ни верно ли то, что мы говорим».
Таким образом, во второй половине XIX века, и особенно к концу его, была осознана необходимость уточнить фундаментальные понятия математики и прояснить ее логические основания. В то же время были сделаны успешные попытки применить методы математики к логике. Усилиями Буля, Пирса, Де Моргана, Шредера, Порецкого была разработана
Формализация означает такое построение арифметики (или другой науки), при котором принимаются некоторые основные понятия определения, положения (аксиомы) и правила выведения из них других положений. Строгость определения понятий исключает возможность неточностей, а соблюдение правил должно (по идее) обеспечить возможность непротиворечивого выведения всех предложений (или формул) данной системы.
Поскольку задача состояла в формализации и аксиоматизации уже давно сложившихся наук, естественно, что при этом можно было рассматривать их как готовое наличное знание и искать в них одну лишь логическую форму, совершенно отвлекаясь от вопроса о происхождении их понятий и принципов, от отношения их к эмпирической реальности, от их интуитивного содержания. Поэтому в «Основах геометрии» Гильберта мы находим очень мало чертежей и фигур.
«Основная мысль моей теории доказательства, — писал Гильберт, — такова: все высказывания, которые составляют вместе математику, превращаются в формулы, так что сама математика превращается в совокупность формул. Эти формулы отличаются от обычных формул математики только тем, что в них, кроме обычных знаков, встречаются также и логические знаки» (7,366). Некоторые из этих формул были приняты в качестве аксиом, из которых по соответствующим правилам выводились теоремы.
Аналогичным образом была проведена и формализация арифметики. Поскольку и здесь речь шла о том, чтобы создать наиболее строгую и стройную дедуктивную систему, эта цель, казалось, могла быть достигнута при максимальном исключении всякого внелогического интуитивного содержания из понятий и предложений арифметики и выявлении, таким образом их внутренней логической структуры. Грандиозная попытка полного сведения чистой математики к логике была предпринята в Principia Mathematica Уайтхеда и Рассела и, в известном смысле, была естественным логическим завершением всего этого движения. Таким образом, математика была, по существу, сведена к логике. Еще Фреге положил начало так называемому логицизму, заявив, что математика это ветвь логики. Эта же точка зрения была принята и Расселом.
Попытка сведения математики к логике с самого начала подверглась критике со стороны многих математиков, придерживавшихся, вообще говоря, весьма различных взглядов. Защитники логицизма утверждали, что «все математические рассуждения совершаются в силу одних лишь правил логики, точно так же, как все шахматные партии… происходят на основании правил игры».
Противники его доказывали, что вести плодотворное рассуждение в математике можно, «только введя предпосылки, не сводимые к логике». Решающее значение для исхода этой довольно продолжительной полемики имела знаменитая теорема Гёделя. В 1931 г. Гёдель доказал, что в каждой достаточно богатой средствами выражения формализованной системе имеются содержательные истинные утверждения, которые не могут быть доказаны средствами этой системы; это значит, что полная формализация, например, арифметики принципиально неосуществима, что «понятия и принципы всей математики не могут быть полностью выражены никакой формальной системой, как бы мощна она ни была» (19, 36).
Все эти проблемы интересуют нас не сами по себе, а с точки зрения того влияния, которое они оказали на становление логического позитивизма. Опыт построения формализованных систем породил надежды на то, что вообще все научное знание можно выразить аналогичным образом. Это было, в общем- то, понятное увлечение успехами формализации. Казалось, что весь вопрос в том, чтобы подобрать соответствующий язык — знаковую символику, включающую как необходимые термины, так и правила оперирования ими, в частности, правила выведения.
Как говорит Эрмсон в своей книге «Философский анализ». Рассел считал, что «логика, из которой может быть выведена математика во всей ее сложности, должна быть адекватным остовом языка, способного выразить все, что вообще может быть точно сказано» (78, 7).
Большую роль сыграли здесь теория типов и теория дескрипции, созданные Б.Расселом.
Поводом для создания теории типов явились парадоксы, обнаруженные Расселом при изучении работ Фреге и Кантора. Эти парадоксы заставили вспомнить о старых парадоксах, известных еще древним. Парадокс «лжец» состоит в следующем: Эпименид-критянин говорит, что все критяне лгут. Но так как он сам критянин, то, следовательно, и он лжет. Значит, критяне говорят правду. Второй вариант парадокса: «Все, что я говорю — ложь, но я говорю, что я лгу, значит, я говорю правду, а если я говорю правду, то значит, я лгу».
Аналогичен и «парадокс крокодила»: крокодил утащил у женщины ребенка, женщина стала плакать и молить крокодила вернуть ребенка. Крокодил сказал: «Если ты угадаешь, что я сделаю, я верну ребенка. Если не угадаешь, то не верну». Женщина сказала: «Ты не вернешь мне ребенка». Теперь крокодил задумался: «Если он вернет ребенка, значит, женщина не угадала, и он не должен его возвращать. Но если он не вернет, то значит, женщина угадала, и по уговору он должен его вернуть. Как же тут быть?». Говорят, что крокодил думал, думал, думал, пока не сдох. Крокодила не стало, а парадокс остался.
Обратимся теперь к собственно парадоксу Рассела. Предположим, что имеются классы различных вещей. Иногда класс может быть членом самого себя, иногда — нет. Класс чайных ложек не есть чайная