будет все ближе и ближе приближаться к Черепахе-1, но никогда не сможет ее перегнать. Такой вывод, конечно же, противоречит нашему опыту, но логического противоречия у нас пока нет.

Пусть, однако, Ахилл примется догонять более дальнюю Черепаху-2, не обращая никакого внимания на ближнюю. Тот же способ рассуждения позволяет утверждать, что Ахилл сумеет вплотную приблизиться к Черепахе-2, но это означает, что он перегонит Черепаху-1. Теперь мы приходим уже к логическому противоречию” [6].

Здесь трудно что-либо возразить, если оставаться в плену образных представлений. Необходимо выявить формальную суть дела, что позволит перевести дискуссию в русло строгих рассуждений. Как нам кажется, первая апория сводится к следующим трем утверждениям:

(0) Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].

(1) Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [A a1] [a1 a2] [a2 a3]… [an an+1].

(2) Поскольку бесконечная последовательность аi (1 ? i ‹ ?) не имеет последней точки, невозможно завершить движение побывав в каждой из точке этой последовательности.

Проиллюстрировать полученный вывод можно по-разному. Наиболее известная иллюстрация – “самое быстрое никогда не сможет догнать самое медленное” – была рассмотрена выше. Но можно предложить более радикальную картину, в которой обливающийся потом Ахилл (вышедший из пункта А) безуспешно пытается настичь черепаху, преспокойно греющуюся на Солнце (в пункте В) и даже не думающую убегать. Суть апории от этого не меняется. Иллюстрацией тогда станет куда более острое высказывание – “самое быстрое никогда не сможет догнать неподвижное”. Если первая иллюстрация парадоксальна, то вторая – тем паче.

При этом нигде не утверждается, что убывающие последовательности отрезков ai для [A B] и ai' для [A' B'] должны быть одинаковы. Напротив, если отрезки [A B] и [A' B'] неравны по длине между собой, их разбиения на бесконечные последовательности убывающих отрезков окажутся различными. В приведенном рассуждении Ахилла отделяет от черепах 1 и 2 разные расстояния. Поэтому мы имеем два различных отрезка [A B1] и [A B] с общей начальной точкой А. Неравные отрезки [A B1] и [A B] порождают различные бесконечные последовательности точек, и недопустимо использовать одну из них вместо другой. Между тем именно эта незаконная операция применяется в аргументах о двух черепахам [7] .

Если не смешивать иллюстрации и существо апории, то можно утверждать, на наш взгляд, что апории Ахилл и Дихотомия симметричны по отношению к друг другу. В самом деле, Дихотомия также водится к следующим трем утверждениям:

(0) Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].

(1) Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [bn+1 bn]… [b3 b2] [b2 b1]… [b1 B].

(2) Поскольку бесконечная последовательность bi не имеет первой точки, невозможно побывать в каждой из точек этой последовательности.

Таким образом, апория Ахилл основывается на тезисе о невозможности завершить движение из-за необходимости посетить последовательно каждую из точек бесконечного ряда, упорядоченного по типу ? (т. е. по типу порядка на натуральных числах), который не имеет последнего элемента. В свою очередь Дихотомия утверждает невозможность начала движения из-за наличия бесконечного ряда точек, упорядоченных по типу ?* (так упорядочены целые отрицательные числа), который не имеет первого элемента.

Проанализировав более тщательно две приведенные апории, мы обнаружим, что обе они опираются на допущение о непрерывности пространства и времени в смысле их бесконечной делимости. Такое допущение непрерывности отличается от современного, но имело место в древности. Без допущения тезиса о том, что любой пространственный или временной интервал можно разделить на меньшие по длине интервалы, обе апории рушатся. Зенон прекрасно это понимал. Поэтому он приводит аргумент, исходящий из принятия допущения о дискретности пространства и времени, т. е. допущения о существовании элементарных, далее неделимых, длин и времен.

Стадий

Итак, допустим существование неделимых отрезков пространства и интервалов времени. Рассмотрим следующую схему, на которой каждая клетка таблицы представляет неделимый блок пространства. Имеется три ряда объектов А, В и С, занимающих по три блока пространства, причем первый ряд остается неподвижным, а ряды В и С начинают одновременное движение в направлении, указанном стрелками:

Ряд С, утверждает Зенон, за неделимым момент времени прошел одно неделимое место неподвижного ряда А (место А1). Однако за то же самое время ряд С прошел два места ряда В (блоки В2 и В3). Согласно Зенону, это противоречиво, т. к. должен был встретиться момент прохождения блока В2, изображенный на следующей схеме:

Но где в это промежуточное положение находился ряд А? Для него просто не остается соответствующего места. Остается либо признать, что движения нет, либо согласиться с тем, что ряд А делим не на три, а на большее количество мест. Но в последнем случае мы вновь возвращаемся к допущению о бесконечной делимости пространства и времени, снова попадая в тупик апорий Дихотомия и Ахилл. При любом исходе движение оказывается невозможным. Известный английский физик-космолог и философ Дж. Уитроу следующим образом прокомментировал сложившуюся ситуацию:

Апория Стадий, “несмотря на все ее остроумие, решается довольно просто, т. к., если пространство и время состоят из дискретных единиц, в этом случае относительные движения должны быть таковы, что переходы типа 0 > 1 – АА могут случаться в последующие моменты. Отрицание Зеноном этой возможности основывается не на логическом законе, а просто на ошибочной апелляции к “здравому смыслу”, т. к. в действительности он молчаливо предполагает постулат непрерывности, который несовместим с гипотезой, принятой в начале рассуждения. Как это ни странно, но если мы примем такие гипотезы, то движение будет представлять собой прерывную последовательность различных конфигураций, как в кинофильме, и ни в какой момент времени не будут существовать промежуточные конфигурации. Переход электрона с одной орбиты на другую рассматривается в элементарной теории атома Бора именно как переход такого типа” [8].

Мы считаем, что сказанное Уитроу верно. Промежуточное положение (0/1) с логической точки зрения вовсе не обязано наличествовать в какой-то момент времени, поскольку предположение о его отсутствии непротиворечиво [9]. Другой вопрос, что наши привычные представления о движении, опирающиеся интуицию непрерывности, оказываются неадекватными в дискретном случае. В этом отличие дискретной ситуации от ситуации с бесконечной делимостью

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату