значений автокорреляции (или, вернее, выборочной автокорреляции за большое время включения
Рис. 9. Автокорреляция
Заметим, что подобные автокорреляционные кривые применялись уже много лет в оптике и что прибором, с помощью которого их получали, был интерферометр Майкельсона (рис. 10). Интерферометр Майкельсона посредством системы зеркал и линз разделяет световой луч на две части, которые посылаются по путям разной длины и затем вновь соединяются в один луч. Различные длины путей вызывают различные задержки во [c.273] времени, и результирующий луч будет равен сумме двух отражений входящего луча, которые можно опять обозначить через
Рис. 10. Интерферометр Майкельсона
Все это неявно содержалось в работе Майкельсона. Нетрудно видеть, что при выполнении преобразования Фурье над интерференционными полосами интерферометр дает нам энергетический спектр света и тем самым по существу является спектрометром. Более того, это самый точный из известных нам типов спектрометров.
Спектрометр такого типа получил должное признание лишь в последние годы. Мне говорили, что теперь он принят в качестве важного средства прецизионных измерений. Отсюда видно, что методы обработки автокорреляционных записей, которые я сейчас изложу, применимы также в спектроскопии и позволяют довести до предела ту информацию, которую может дать спектрометр.
Рассмотрим, как получить спектр мозговой электрической волны по автокорреляции. Пусть
(10.02)
Здесь
Будем впредь полагать, что первые две части спектра: дискретная часть и непрерывная часть, возрастающая [c.274] на множестве меры нуль, — отсутствуют. В этом случае можно написать
(10.03)
где ? (?) — спектральная плотность. Если ? (?) принадлежит к классу Лебега
(10.04)
Как видно по автокорреляционной кривой мозговых волн, преобладающая часть мощности спектра сосредоточена в окрестности частоты 10
Два пика около 10 и —10 суть зеркальные изображения друг друга.
Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и —10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что
(10.05)
Другими словами, если умножить
Но
(10.06)
Следовательно, действительная и мнимая части функции
Частоты в окрестности +20 можно исключить, пропустив эти две функции через фильтр нижних частот, что равносильно усреднению по интервалу в одну двадцатую секунды или более.
Пусть мы анализируем кривую, у которой бо?льшая часть мощности сосредоточена вблизи частоты 10
а другая — примерно так:
Усреднив вторую кривую по интервалу в 0,1 сек, получим нуль. Усреднив первую кривую, получим половину максимальной высоты. Таким образом, сглаживая
Обозначим теперь через
(10.07)
Выражение (10.07) должно быть действительным, так как это спектр. Следовательно, оно будет равно
(10.08)
Другими словами, если найти косинус-преобразование от