Коль скоро автокорреляционные кривые локально представляют собой почти синусоиду с периодом, скажем, 0,1
Оправдание этой процедуры следующее. Распределение массы, равное
1 в точках 2?
—1 в точках (2
0 во всех остальных точках,
если его подвергнуть гармоническому анализу, будет [c.277] содержать косинусоидальную составляющую с частотой 1 и не будет иметь синусоидальной составляющей. Точно так же распределение массы, равное
1 при (2
—1 при (2
0 во всех остальных точках,
будет содержать синусоидальную составляющую с частотой 1 и не будет иметь косинусоидальной составляющей. Оба распределения будут содержать также составляющие с частотами
Мы нашли метод гетеродинирования очень полезным при гармоническом анализе мозговых волн, когда в распоряжении имеются лишь ручные средства и когда объем работы становится подавляющим, если выполнять все шаги гармонического анализа без помощи гетеродинирования. Все наши первые исследования по гармоническому анализу спектров мозга выполнены методом гетеродинирования. Но поскольку со временем появилась возможность применять цифровую вычислительную машину, для которой объем работы не столь существен, многие из последующих анализов были проведены прямыми методами, без гетеродинирования. Однако еще немало работы придется делать в местах, где нет цифровых вычислительных машин, и я не считаю метод гетеродинирования устаревшим в практическом отношении.
Я привожу здесь куски одной автокорреляционной кривой, полученной при наших исследованиях. Ввиду того, что она охватывает большую серию данных, воспроизвести ее полностью затруднительно, и мы даем только се начало, в окрестности ? =0 и один из дальнейших кусков.
Рис. 11 изображает результат гармонического анализа автокорреляционной кривой, часть которой показана на рис. 9. В данном случае результат был получен на быстродействующей цифровой вычислительной машине[192], [c.278] но мы обнаружили хорошее согласие между этим спектром и вычисленным ранее вручную методами гетеродинирования, по крайней мере вблизи сильной части спектра.
Рис. 11. Спектр
Рассматривая кривую, мы обнаруживаем замечательное падение мощности в окрестности частоты 9,05
Весьма желательно, чтобы исследования, здесь упомянутые, были продолжены более точными инструментальными работами, с лучшими приборами, и чтобы благодаря этому гипотезы, высказанные здесь, могли быть окончательно подтверждены или окончательно опровергнуты.
Теперь я хочу перейти к вопросу выборки. Для этого мне понадобятся некоторые идеи из моих предыдущих работ об интегрировании в пространстве функций[193]. С помощью этого аппарата мы сможет построить статистическую модель непрерывного процесса с заданным спектром. Хотя такая модель не воспроизводит в точности процесса формирования мозговых волн, она достаточно близка к нему, чтобы доставить статистически значимую информацию о том, какой среднеквадратической ошибки можно ожидать в спектрах волн, подобных представленному выше.
Здесь я сформулирую без доказательств ряд свойств некоторой действительной функции
(10.09)
определяется для всех функций ?(
(10.10)
и затем определяется для всех функций ?(
(10.11)
вводятся аналогичным образом.
Основная теорема, используемая нами, утверждает, что
(10.12)
можно найти, положив
, (10.13)
где переменные ?
(10.14)