живыми организмами. Представим себе ряд генераторов переменного тока, частоты которых регулируются регуляторами, приданными первичным двигателям. Эти регуляторы удерживают частоты в сравнительно узких полосах. Предположим, что выходы генераторов присоединены параллельно к сборным шинам, а с них ток идет на внешнюю нагрузку, которая в общем случае будет подвержена более или менее случайным флюктуациям, вследствие включения и выключения освещения и т. п. Чтобы избежать проблем, какие возникали на электростанциях прежнего типа в связи с участием человека в коммутации, предположим, что включение и выключение [c.291] генераторов происходят автоматически. Когда генератор доведен до скорости и фазы, достаточно близких к скорости и фазе других генераторов системы, автоматическое устройство подключает его к сборным шинам, а если случайно его частота и фаза отклоняются слишком далеко от надлежащих величин, аналогичное устройство автоматически отключает его.

В такой системе генератор, стремящийся вращаться слишком быстро и, следовательно, иметь слишком высокую частоту, берет большую долю нагрузки, чем ему полагается, а генератор, вращающийся слишком медленно, берет меньше своей нормальной доли. В результате частоты генераторов сближаются. Генерирующая система в целом действует как бы под управлением скрытого регулятора, более точного, чем регуляторы отдельных генераторов, и представляющего собой совокупность этих регуляторов вместе с электрическим взаимодействием между ними. Этим, по крайней мере частично, обусловлена точная регулировка частоты электрических генерирующих систем. Потому-то и возможно применение электрических часов высокой точности.

Я предлагаю, чтобы выходы таких систем были исследованы теоретически и экспериментально теми же самыми приемами, какими мы исследовали волны головного мозга.

С исторической точки зрения интересно, что на заре техники переменного тока делались попытки включать генераторы с постоянной величиной напряжения (такие же, как в современных генерирующих системах) не параллельно, а последовательно. Оказалось, что взаимодействие отдельных генераторов по частоте выражалось в отталкивании, а не в сближении. В результате такие системы были недопустимо неустойчивы, если только вращающиеся части отдельных генераторов не были жестко соединены общим валом или зубчатым механизмом. Напротив, параллельное подключение генераторов к общим сборным шинам оказалось внутренне устойчивым, что позволило соединять генераторы разных станций в единую автономную систему. Если воспользоваться биологической аналогией, то параллельная система обладала лучшим гомеостазом, чем последовательная система, и потому выжила, в то время как последовательная была устранена естественным отбором. [c.292]

Итак, мы видим, что нелинейное взаимодействие, создающее притяжение частот, может породить самоорганизующуюся систему, как в случае исследованных нами мозговых электрических волн или в случае сети переменного тока. Возможность такой самоорганизации отнюдь не ограничивается низкими частотами, свойственными этим двум явлениям. Представим себе, например, самоорганизующиеся системы на частотном уровне инфракрасного света или радиолокационных спектров.

Как нам уже приходилось говорить, одной из центральных проблем биологии является способ, посредством которого основные вещества, входящие в гены или вирусы, или, может быть, специфические вещества, вызывающие рак, воспроизводят себя из материалов, лишенных этой специфики, скажем из смеси аминокислот и нуклеиновых кислот. Обычно дается такое объяснение, что одна молекула этих веществ действует в качестве шаблона, с помощью которого меньшие молекулы компонентов смеси располагаются в определенном порядке и объединяются в аналогичную макромолекулу. По существу, это лишь оборот речи, лишь иной способ описания фундаментального феномена жизни, состоящего в том, что новые макромолекулы формируются по образу и подобию существующих макромолекул.

Как бы ни протекал такой процесс, это — динамический процесс, включающий какие-то силы или их эквиваленты. Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфракрасные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот. Так как весь предмет остается еще sub judice[203] и подробности даже не сформулированы, я воздержусь от более [c.293] конкретных высказываний. Очевидный путь к решению состоит в том, чтобы изучить спектры поглощения и излучения большого количества вирусного вещества, например кристалла мозаичного вируса табака, и затем проследить действие света этих частот на образование дальнейших вирусов от существующего вируса в надлежащей питательной среде. Говоря о спектрах поглощения, я имею в виду явление, которое почти несомненно существует; что касается спектров излучения, то нечто подобное мы имеем в явлении флюоресценции.

Любое такое исследование потребует методов высокой точности для подробного расчета спектров в условиях чрезмерно сильного — в обычном смысле — света с непрерывным спектром. Мы уже видели, что подобная задача встает перед нами при микроанализе мозговых волн, и что математика интерференционной спектрографии по существу совпадает с той, какой мы пользовались здесь. Поэтому я делаю специальное предложение, чтобы возможности метода были полностью использованы при изучении молекулярных спектров, и в частности при изучении спектров вирусов, генов и рака. Сейчас преждевременно предсказывать значение этих методов в исследованиях по чистой биологии и в медицине, но я питаю большие надежды, что они могут оказаться чрезвычайно ценными в обеих областях. [c.294]

Приложения

Приложение I.

Поведение, целенаправленность и телеология[204]

Артуро Розенблют, Норберт Винер и Джулиан Бигелоу

Настоящий этюд преследует двоякую цель. Во-первых, определить бихевиористический (поведенческий)[205] метод исследования естественных событий и классифицировать поведение. Во-вторых, подчеркнуть важность понятия целенаправленности.

Пусть дан некоторый объект, относительно отделенный от окружающей среды для своего изучения. Бихевиористический метод состоит в рассмотрении выхода объекта и отношений между выходом и входом. Под выходом понимается любое изменение, производимое объектом в окружении. Обратно, под входом понимается любое внешнее к объекту событие, изменяющее любым образом этот объект.

Предыдущая формулировка не содержит никакого упоминания о специфической структуре и внутренней организации объекта. Это принципиальное умолчание, ибо на нем основано различие между бихевиористическим и альтернативным функциональным методом. При функциональном анализе, в противоположность бихевиористическому подходу, главную цель составляет внутренняя организация изучаемого образования, его структура и свойства; отношения между объектом и окружением значат сравнительно мало. [c.297]

Из такого определения бихевиористического метода вытекает весьма широкое определение поведения. Под поведением понимается любое изменение объекта по отношению к окружающей среде. Это изменение может представлять собой преимущественно выход объекта при минимальном, дальнем или побочном входе; или же оно может быть непосредственно приписано определенному входу. В итоге любое преобразование объекта, заметное извне, может быть отмечено как

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату