Hopf E. Ergodentheorie. // Ergeb. Math. — 1937. — B. 5. — № 2, Springer, Berlin.
Известная сказка английского писателя Льюиса Кэрролла (Ч.Л. Доджсона, 1832—1898), неоднократно издававшаяся в русском переводе. — Прим. ред.
Читатель, не ошибись в истолковании титула! Это, конечно, фигура с игральной карты — червонная дама, если быть очень точным. Мы, однако, следуем за русским переводом сказки. — Прим- ред.
По имени норвежского математика Нильса Абеля (1802—1829). — Прим. ред.
Wiener N. The Fourier Integral and Certain of Its Applications. — Cambridge, England: the University Press; N.Y.: Dover Publications, Inc., 1933 (русский перевод: Винер Н. Интеграл Фурье и некоторые его применения. — М.: Физматгиз, 1963). — Прим. ред.
Haar H. Der Ma?begriff in der Theorie der Kontinuierlichen Gruppen. // Ann. of Math. — Ser. 2. — 1933. — Vol. 34. — P. 147—169.
См. также: Винер Н. Теория предсказания. // Современная математика для инженеров. / Под ред. Э.Ф. Беккенбаха. — М.: ИЛ, 1959. С. 185—215. — Прим. ред.
l.i.m. (the limit in the mean) — применяемое Винером обозначение предела в среднем (употребляется и в русском переводе его «Интеграла Фурье») — Прим. ред.
Идея такого существа, нарушающего второй закон термодинамики, изложена Максвеллом в 1871 г. в его «Теории теплоты» (Maxwell S.С. Theory of Heat. — London: Longmans, Green, and Co., 1871. Chap. XXII. Р. 308—309; русское издание: Максуэлль К. Теория теплоты в элементарной обработке. / Пер. с 7-го англ. издания. — Киев: Типография И.Н. Кушнерева и Ко, 1888. Гл. XXII. С. 288—289). — Прим. ред.
Вокодер — система «синтетической» телефонии, в которой по каналам связи передаются вместо натуральных речевых сигналов упрощенные командные сигналы, получаемые в результате анализа речи на передающем конце. Тем самым передача занимает меньшую полосу частот. На приемном конце речь искусственно синтезируется под управлением командных сигналов, определяющих высоту и силу тонов, ритм и т. д. — Прим. ред.
Здесь автор использует личное сообщение Дж. фон Неймана.
Равенство (3.04) означает, что площадь под кривой y=f1 (x) равна 1. Поэтому средняя ширина этой области равна обратной величине ее средней высоты, т. е. среднего значения функции f1 (x). Отсюда, по-видимому, автор заключает об указанной вольной связи между средними логарифмами и, приняв, согласно (3.03), минус средний двоичный логарифм от ширины области за меру количества информации, находит в итоге ,
как в (3.05). — Прим. ред.