Первая ошибка заключается в том, что мы можем отвергнуть гипотезу, которую следует принять. Если, однако, мы принимаем гипотезу, когда ее следует отвергнуть, то совершаем другую ошибку. Не зная заранее, верна или нет гипотеза, мы должны решить, какую цену мы готовы заплатить за первую ошибку, а какую за вторую. Иногда одна ошибка серьезнее, чем другая, и в таких случаях мы должны решить, принимать или отвергать неподтвержденную гипотезу, выбирая меньшее из двух зол.
Допустим, вы хотите использовать определенную торговую систему, но не уверены, будет ли она работать при торговле в режиме реального времени. Здесь гипотеза состоит в том, что торговая система будет хорошо работать в режиме реального времени. Вы решаете принять гипотезу и торговать с помощью этой системы. Если гипотеза не подтвердится, то вы совершите вторую ошибку и заплатите за нее проигрышами. С другой стороны, если вы решите не торговать по системе, которая на самом деле окажется прибыльной, то совершите первую из рассмотренных нами ошибок. В этом случае цена, которую вы заплатите, — это упущенные прибыли. Что лучше? Ясно, что упущенная прибыль. Хотя из этого примера можно сделать вывод, что если вы собираетесь торговать по системе в режиме реального времени, то ей, конечно, надо быть прибыльной на прошлых данных, но есть и другой мотив для использования этого примера. Если мы допустим, что зависимость есть, когда фактически ее нет, то совершим вторую ошибку. Цена, которую мы заплатим, — реальный убыток. Однако если мы допустим, что зависимости нет, а она на самом деле есть, то совершим первую ошибку и упустим прибыль. Согласитесь, что лучше упустить прибыль, чем понести реальные убытки. Поэтому, пока не будет убедительного доказательства зависимости, вам лучше исходить из того, что прибыли и убытки в торговле (неважно, по механической системе или нет) не зависят от предыдущих результатов. Здесь, как может показаться, существует некий парадокс. Во-первых, если существует зависимость в сделках, то система подоптимальна. Однако о зависимости никогда нельзя говорить с полной уверенностью. Если мы будем действовать, как будто зависимость есть (когда фактически ее нет), мы совершим более дорогостоящую ошибку, чем если бы действовали, как будто зависимости нет (когда фактически она есть). Допустим, что в системе с историей из 60 сделок на основе серийного теста обнаружена зависимость с доверительным уровнем 95%. Мы хотим, чтобы наша система была оптимальной, поэтому соответствующим образом изменяем ее правила, чтобы использовать замеченную зависимость. Предположим, после этого у нас остается 40 сделок, и зависимости больше нет, в результате, мы приходим к выводу, что правила системы оптимальны. Теперь при 40 сделках мы получаем более высокое оптимальное f, чем при 60 (более подробно об оптимальном f — далее в этой главе). Если вы будете торговать по этой системе с новыми правилами, использующими зависимость, применяя более высокое сопутствующее оптимальное f, а зависимости на самом деле нет, то результат будет ближе к 60 сделкам, чем к 40 сделкам, в которых были показаны лучшие результаты. Таким образом, f, которое вы выбрали, будет сдвинуто вправо, что выразится в потерях, которые вы понесете из-за того, что предположили зависимость. Если зависимость присутствует, тогда вы будете ближе к пику кривой f, допускающей, что зависимость существует. Если бы вы решили, что зависимости нет, когда фактически она есть, то вы были бы слева от пика кривой f, и ваша система была бы подоптимальной (но вы потеряете меньше, чем если бы были справа от пика).
Короче говоря, ищите зависимость. Если она обнаружится с достаточно высокой вероятностью, тогда измените правила системы, чтобы использовать эту зависимость. В противном случае, при отсутствии убедительного статистического доказательства зависимости, считайте, что ее не существует (и вы понесете меньшие потери, если фактически зависимость все же существует).
Математическое ожидание
Таким же образом, вам лучше не торговать, пока не будет убедительных доказательств того, что рыночная система, по которой вы собираетесь торговать, прибыльна, то есть пока вы не будете уверены, что рыночная система имеет положительное математическое ожидание. Математическое ожидание является суммой, которую вы можете заработать или проиграть, в среднем, по каждой ставке. На языке азартных игроков это иногда называется
где Р = вероятность выигрыша или проигрыша;
А = выигранная или проигранная сумма;
N = количество возможных результатов.
Математическое ожидание — это сумма произведений каждого возможного выигрыша или проигрыша и вероятности такого выигрыша или проигрыша.
Давайте рассмотрим математическое ожидание игры, где у вас есть 50% шансов выиграть 2 доллара и 50% шансов проиграть 1 доллар:
Математическое ожидание = (0,5 * 2) + (0,5 * (-1)) =1+(-0.5) =0,5
В таком случае ваше математическое ожидание — выигрыш 50 центов, в среднем, забросок.
Рассмотрим ставку на один номер в рулетке. В этом случае ваше математическое ожидание составит:
МО =((1/38)* 35)+((37/38) *(-1)) = (0,02631578947 * 35) + (0,9736842105 * (-1)) = (0,9210526315) + (- 0,9736842105) = -0,05263157903
Если вы поставите 1 доллар на номер в рулетке (американский двойной ноль), то можете ожидать проигрыш, в среднем, 5,26 центов на один круг. Если вы поставите 5 долларов, то можете ожидать проигрыш, в среднем, 26,3
цента на один круг. Отметьте, что
МО = (-0,0526 * 1) + (-0,0526 *10) + (-0,0526 *5) =0,0526 - 0,526 - 0,263 = -0,8416
Таким образом, следует ожидать проигрыш 84,16 цента. Этот принцип объясняет, почему системы, в которых пытаются изменить размер ставок в зависимости от того, сколько проигрышей или выигрышей было (допуская процесс независимых испытаний), считаются проигрышными. Сумма отрицательных ожиданий по ставкам всегда является отрицательным ожиданием!
В отношении управления капиталом очень важно понимать,
Эта аксиома верна не только для игры с отрицательным ожиданием, она истинна также для игры с равными шансами. Поэтому единственный случай, когда у вас есть шанс выиграть в долгосрочной перспективе, — это игра с положительным математическим ожиданием. Кроме того, вы можете выиграть только в двух случаях. Во-первых, при использовании ставки одинакового размера, во-вторых, используя ставки при f, меньшем значения f, соответствующего точке, в которой среднее геометрическое HPR становится равным или меньшим 1.
Эта аксиома истинна только при отсутствии верхнего поглощающего барьера. Например, азартный игрок, который начинает со 100 долларов, прекратит играть, если его счет вырастет до 101 доллара. Эта верхняя цель (101 доллар) называется поглощающим барьером. Допустим, игрок всегда ставит 1 доллар на красный цвет рулетки. Таким образом, у него небольшое отрицательное математическое ожидание. У игрока больше шансов увидеть, как его счет вырастет до 101 доллара и он прекратит играть, чем то, что его счет уменьшится до нуля, и он будет вынужден прекратить играть. Если он будет повторять этот процесс снова и снова, то окажется в отрицательном математическом ожидании. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, не применима. Различие между отрицательным ожиданием и положительным ожиданием — это различие между жизнью и смертью. Не имеет значения, насколько положительное или насколько отрицательное ожидание; важно только то, положительное оно или отрицательное. Поэтому до рассмотрения вопросов управления капиталом вы должны найти игру с