периоды выигрыша (проигрыша) тес­тируемой системы ожидаемым? Если нет, существует ли достаточно высокая до­верительная граница, чтобы допустить, что между сделками существует зависи­мость, т.е. зависит ли результат текущей сделки от результата предыдущих сделок? Ниже приведено уравнение серийного теста. Счет Z для торговой системы равен:

(1.1) Z=(N*(R-0,5)-Х)/((Х*(Х-N))/(N-1))^(1/2), где

N = общее число сделок в последовательности;

R = общее число серий выигрышных или проигрышных сделок;

X=2*W*L;

W = общее число выигрышных сделок в последовательности;

L = общее число проигрышных сделок в последовательности.

Этот расчет можно провести следующим образом:

1. Возьмите данные по вашим сделкам:

A) Общее число сделок, т.е. N.

Б) Общее число выигрышных сделок и общее число проигрышных сделок.

Теперь рассчитайте X.

Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).

B) Общее число серий в последовательности, т.е. R.

2. Предположим, что произошли следующие сделки:

-3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.

Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько велики выигрыши и проигрыши, а то, сколько было выигрышей и проигрышей, а также серий. Поэтому мы можем переделать наш ряд сделок в простую последовательность плюсов и минусов. Отметьте, что сделка с нулевой прибылью считается проигрышем. Таким образом:

- + + - +-++---+

Как видно, последовательность состоит из 6 прибылей и 6 убытков, поэтому X =2 * 6 * 6 = 72. В последовательности есть 8 серий, поэтому R = 8. Мы называ­ем серией каждое изменение символа, которое встречается при чтении последова­тельности слева направо (т.е. хронологически).

1. Последовательность будет выглядеть следующим образом:- + + - +-++---+ т.е. 1 2 3 4 5 6 7 8

2. Вычислите значение выражения:

N*(R-0,5)-X Для нашего примера:

12* (8 -0, 5) -72

12*7,5-72

90 - 72

18

3. Вычислите значение выражения:

(X*(X-N))/(N-1) Для нашего примера:

(72* (72-12))/(12-1)

(72* 60)/11

4320/11

392,727272

4. Возьмите квадратный корень числа, полученного в пункте 3. В нашем примере:

392,727272 ^(1/2) = 19,81734777

5. Разделите ответ из пункта 2 на ответ из пункта 4. Это и есть счет Z. В нашем примере:

18/19,81734777 = 0,9082951063

6. Теперь преобразуйте ваш счет Z в доверительную границу. Распределение периодов является биномиальным распределением. Однако когда рассмат­риваются 30 или больше сделок, мы можем использовать нормальное рас­пределение, как близкое к биномиальному. Таким образом, если вы исполь­ зуете 30 или более сделок, вы просто можете преобразовать ваш счет Z в до­верительную границу, основываясь на уравнении (3.22) для нормального распределения.

Серийный тест подскажет вам, содержит ли ваша последовательность выигры­шей и проигрышей больше или меньше полос (серий выигрышей или проигры­шей), чем можно было бы ожидать от действительно случайной последовательно­сти, в которой нет зависимости между испытаниями. Так как в нашем случае мы находимся на уровне относительно низкой доверительной границы, то можно допустить, что между сделками в этой последовательности нет зависимости.

Если счет Z имеет отрицательное значение, то при расчете доверительной гра­ницы просто возьмите его абсолютное значение. Отрицательный счет Z говорит о положительной зависимости, то есть полос меньше, чем при нормальном распре­делении вероятности, и следовательно, выигрыши порождают выигрыши, а про­игрыши порождают проигрыши. Положительный счет Z говорит об отрицатель­ной зависимости, то есть полос больше, чем при нормальном распределении ве­роятности, и следовательно, выигрыши порождают проигрыши, а проигрыши порождают выигрыши.

Какой уровень доверительной границы считать приемлемым? Статистики, как правило, рекомендуют доверительную границу не менее 90%. Некоторые рекомендуют доверительную границу свыше 99%, чтобы быть уверенными, что за­висимость существует, другие рекомендуют менее строгий минимум 95,45% (2 стандартных отклонения).

Очень редко система демонстрирует доверительную границу свыше 95,45%, чаще всего она менее 90%. Даже если вы найдете систему с доверительной гра­ницей от 90 до 95,45, это не будет золотым самородком. Чтобы убедиться в зави­симости, на которой можно хорошо заработать, вам нужно как мини­мум 95,45%. Пока зависимость находится на приемлемой доверительной границе, вы мо­жете изменить систему, чтобы улучшить торговые решения, даже если вы не по­нимаете основной причины зависимости. Если вы узнаете причину, то сможете оценить, когда зависимость действовала, а когда нет, а также когда можно ожи­дать изменение степени зависимости. До настоящего момента мы смотрели на зависимость только с точки зрения того, была ли последняя сделка выигрышем или проигрышем. Теперь мы попыта­емся определить, есть ли в последовательности выигрышей и проигрышей зави­симость или нет. Серийный тест на наличие зависимости автоматически прини­мает в расчет процент выигрышей и проигрышей. Однако серийный тест по пе­риодам выигрышей и проигрышей учитывает последовательность выигрышей и проигрышей, но не их размер. Для того чтобы получить истинную независи­мость, не только сама последовательность выигрышей и проигрышей должна быть независимой, но и размеры выигрышей и проигрышей в последовательнос­ти также должны быть независимыми. Выигрыши и проигрыши могут быть неза­висимыми, однако их размеры могут зависеть от результатов предыдущей сделки (или наоборот). Возможным решением является проведение серийного теста только с выигрышными сделками. При этом полосы выигрышей следует разде­лить на длинные (по сравнению со средним значением распределения вероятнос­ти) и менее длинные. Только затем надо искать зависимость между размером вы­игрышных сделок, после этого необходимо провести ту же процедуру с проиг­рышными сделками.

Корреляция

Есть другой, и, может быть, лучший способ определения зависимости между раз­мерами выигрышей и проигрышей. Этот метод позволяет рассмотреть размеры выигрышей и проигрышей с совершенно другой стороны, и когда он использует­ся вместе с серийным f тестом, то взаимосвязь сделок измеряется с большей глуби­ной. Для количественной оценки зависимости или независимости данный метод использует коэффициент линейной корреляции г, который иногда называют пирсоновским r. Посмотрите на рисунок 1-2. На нем изображены две абсолютно коррелиро­ванные последовательности. Мы называем это положительной корреляцией.

Рисунок 1-2 Положительная корреляция (r =1,00)

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату