Теперь посмотрите на рисунок 1-3. Он показывает две последовательности, которые находятся точно в противофазе. Когда одна линия идет вверх, другая следует вниз (и наоборот). Мы называем это
Формула для коэффициента линейной корреляции г двух последовательностей Х и Y такова (черта над переменной обозначает среднее арифметическое значение):
Расчет следует производить следующим образом:
1. Вычислите среднее Х и Y (т.е. X и Y )•
2. Для каждого периода найдите разность между Х и средним X, а также Y и средним Y.
3. Теперь рассчитайте числитель. Для этого для каждого периода перемножьте ответы из шага 2, другими словами, для каждого периода умножьте разность между Х и средним X, на разность между Y и средним Y.
4. Сложите результаты, полученные в шаге 3, за все периоды. Это и есть числитель.
5. Теперь найдите знаменатель. Для этого возьмите результаты шага 2 для каждого периода, как для разностей X, так и для разностей Y, и возведите их в квадрат (теперь они будут положительными значениями).
6. Сложите возведенные в квадрат разности Х за все периоды. Проделайте ту же операцию с возведенными в квадрат разностями Y.
7. Извлеките квадратный корень из суммы возведенных в квадрат разностей X, которые найдены в шаге 6. Теперь проделайте то же с Y, взяв квадратный корень суммы возведенных в квадрат разностей Y.
8. Умножьте два результата, которые вы нашли в шаге 7, то есть умножьте квадратный корень суммы возведенных в квадрат разностей Х на квадратный корень суммы возведенных в квадрат разностей Y. Это и есть знаменатель.
9. Разделите числитель, который вы нашли в шаге 4, на знаменатель, который вы нашли в шаге 8. Это и будет коэффициент линейной корреляции г.
Значение г всегда будет между +1,00 и -1,00. Значение 0 указывает, что корреляции нет.
Теперь посмотрите на рисунок 1-4. Он представляет следующую последовательность из 21 сделки:
Чтобы понять, есть ли какая-либо зависимость между предыдущей и текущей сделкой, мы можем использовать коэффициент линейной корреляции. Для значений Х в формуле для г возьмем P&L по каждой сделке. Для значений Y в формуле для г возьмем ту же самую последовательность P&L, только смещенную на одну сделку. Другими словами, значение Y — это предыдущее значение X. (См. рисунок 1- 5.).
Средние значения различаются, потому что вы усредняете только те Х и Y, которые частично перекрывают друг друга, поэтому последнее значение Y (3) не вносит вклад в среднее Y, а первое значение Х (1) не вносит вклад в среднее X. Числитель является суммой всех значений из столбца Е (0,8). Чтобы найти знаменатель, мы извлечем квадратный корень из итогового значения столбца F, то есть 8,555699, затем извлечем квадратный корень из итогового значения столбца G, то есть 8,258329, и перемножим их, что даст в результате 70,65578. Теперь разделим числитель 0,8 на знаменатель 70,65578 и получим 0,011322. Это наш коэффициент линейной корреляции г. В данном случае коэффициент линейной корреляции 0,011322 едва ли о чем-то говорит, но для многих торговых систем он может достигать больших значений. Высокая положительная корреляция (по крайней мере, 0,25) говорит о том, что большие выигрыши редко сменяются большими проигрышами, и наоборот. Отрицательные значения коэффициента корреляции (между -0,25 и -0,30) подразумевают, что после больших проигрышей следуют большие выигрыши, и наоборот. Для заданного количества сделок с помощью метода, известного как
Наконец, при определении зависимости вы должны провести тесты по разным сегментам данных. Для этого разбейте ваши данные на две или более частей. Если вы увидите зависимость в первой части, тогда посмотрите, существует ли эта зависимость во второй части, и так далее. Это поможет исключить случаи, где появляется кажущаяся зависимость, но фактически ее нет. Использование этих двух инструментов (серийный тест и коэффициент линейной корреляции) поможет ответить на многие вопросы, однако только в том случае, если у вас есть достаточно высокая доверительная граница и/или достаточно высокий коэффициент корреляции. Большую часть времени эти инструменты вряд ли будут вам полезны, так как слишком часто во фьючерсных торговых системах зависимость отсутствует. Если вы получите данные, указывающие на зависимость, то следует обязательно воспользоваться этим обстоятельством в торговле, вернуться и включить новое правило в торговую логику, чтобы использовать зависимость. Другими словами, вы должны вернуться и изменить логику торговой системы, чтобы она учитывала эту зависимость (минуя определенные сделки или разбивая систему на две различные системы, например, одна для сделок после выигрышей и одна для сделок после проигрышей). Таким образом, можно утверждать, что, если в сделках появляется зависимость, вы не максимизировали систему. Зависимость, если она найдена, надо использовать (для этого измените правила системы), пока она не исчезнет. Первой ступенью в управле нии деньгами
Обычные ошибки в отношении зависимости
Будучи трейдерами, мы должны исходить из того, что в большинстве рыночных систем зависимости не существует. То есть, при торговле в данной рыночной системе, мы находимся в среде, где результат следующей сделки не предсказуем на основе результата (результатов) предыдущих сделок. Это не значит, что в рыночных системах никогда не бывает зависимости между сделками. Речь идет о том, что нам следует действовать так, как будто зависимости не существует, пока не будет убедительных доказательств обратного. Это произойдет в случае, если счет Z и коэффициент линейной корреляции указывают на зависимость на рынке даже с оптимизированными параметрами системы. Если мы посчитаем, что за висимость есть, когда нет убедительных доказательств, то обманем сами себя и не получим хороших торговых результатов. Даже если система показала зависимость при доверительной границе 95% для всех значений параметра, это не достаточно высокая доверительная граница, чтобы с уверенностью говорить, что на определенном рынке или в определенной системе зависимость между сделками существует.