переменная, которую вам надо рассчитать, — это Р(Т, U), т.е. веро­ятность того, что базовый инструмент будет равен U при заданном Т (т.е. времени, оставшемся до конца действия опциона). Если использовать модель Блэка-Шоулса или модель товарных опционов Блэка, то можно рассчитать Р(Т, U) следующим образом:

если U < или = О:

если U > Q:

где U = рассматриваемая цена;

Q = текущая цена базового инструмента;

V= годовая волатильность базового инструмента;

Е=доля года, выраженная десятичной дробью, прошедшая с тех пор, когда опцион был приобретен;

N() = функция нормального распределения (уравнение (3.21));

ln() = функция натурального логарифма.

В итоге мы получим взвешенное по вероятности HPR для каждого исхода. Возможен широкий диапазон результатов, но, к сожалению, эти результаты не непрерывны. Например, время до истечения срока не задается непрерывной функцией. До истече­ния срока всегда остается целое число; то же верно и для цены базового инструмента. Если цена акции равна, например, 35, а минимальное изменение цены равно 1/8, то между 30 и 40 находится 81 возможное значение. Зная время, через которое мы собираемся продать опцион, можно рассчитать взвешенные по вероятности HPR для всех возможных цен на этот рыночный день. В нормальном распределении вероятности 99,73% всех результатов попада­ют в интервал трех стандартных отклонений от среднего, которое в нашем случае является текущей ценой базового инструмента. Поэтому нам необходимо рассчи­тать HPR для определенного рыночного дня и каждой дискретной цены между - 3 и + 3 стандартными отклонениями. Можно использовать 4, 5, 6 или больше стан­дартных отклонений, но ответ от этого не станет значительно точнее. Не следует также сокращать ценовое окно до 2 или 1 стандартного отклонения. Выбор 3 стандартньк отклонений, конечно, не является твердым правилом, но в боль­шинстве случаев оно приемлемо. Если мы используем модель Блэка-Шоулса или модель опционов на фьючер­сы Блэка, то можно узнать, какому изменению цены базового инструмента U со­ответствует 1 стандартное отклонение:

где U = текущая цена базового инструмента;

V = годовая волатильность базового инструмента;

Т = доля года, выраженная десятичной дробью, прошедшая с тех пор. когда опцион был приобретен;

ЕХР() = экспоненциальная функция.

Отметьте, что стандартное отклонение является функцией времени, прошедшего с момента открытия позиции.

Для точки, которая на Х стандартных отклонений выше текущей цены базово­го инструмента, получаем:

Для точки, которая на Х стандартных отклонений ниже текущей цены базового инструмента, получаем:

где U =текущая цена базового инструмента;

V =годовая волатильность базового инструмента;

Т =доля года, выраженная десятичной дробью, прошедшая с тех пор, когда опцион был приобретен;

EXPQ = экспоненциальная функция;

Х =число стандартных отклонений от среднего, для которых вы хо­ тите определить вероятности.

Далее следует описание процедуры поиска оптимального f для данного опциона.

Шаг 1. Решите, закроете ли вы позицию по опциону в какой-то конкрет­ный день. Если нет, тогда в дальнейших расчетах используйте дату ис­течения срока опциона.

Шаг 2. Определите, сколько дней вы будете удерживать позицию. Затем преобразуйте это число дней в долю года, выраженную десятичной дробью.

Шаг 3. Для дня из шага 1 рассчитайте точки, которые находятся между +3 и -3 стандартными отклонениями.

Шаг 4. Преобразуйте диапазоны цен из шага 3 в дискретные значения. Другими словами, используя приращения по 1 тику, определите все возможные цены диапазона, включая крайние значения.

Шаг 5. Для каждого из полученных результатов рассчитайте Z(T, U - Y) и Р(Т, U), то есть рассчитайте теоретическую цену опциона, а также ве­роятность того, что базовый инструмент к рассматриваемым датам будет равен определенной цене.

Шаг 6. После того, как вы выполните шаг 5, у вас будут все входные данные, необходимые для расчета взвешенного по вероятности HPR.

где f = тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инст­румента равна U - Y, а время, оставшееся до срока исте­чения, равно Т. Эту цену можно определить с помощью любой модели ценообразования, которую пользователь посчитает подходящей;

Р(Т, U) = 1-хвостая вероятность того, что цена базового инстру­мента равна U, когда время, оставшееся до истечения срока исполнения, равно Т. Это значение можно опре­делить из любой формы распределения, которую пользователь посчитает подходящей;

Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Необходимо отметить, что форма распределения, используемого для Р(Т, U), не обязательно должна быть такой же, как и в модели ценообразования, применяе­мой для определения значений Z(T, U - Y). Например, вы используете модель фондовых опционов Блэка-Шоулса для определения значений Z(T, U - Y). Эта модель предполагает логарифмически нормальное распределение изменений цены, однако для определения соответствующего Р(Т, U) вы можете использовать другую форму распределения.

Шаг 7. Теперь мы можем начать поиск оптимального f с помощью метода итераций, перебирая все возможные значения f между 0 и 1, или с по­мощью метода параболической интерполяции, или любого другого одномерного алгоритма поиска. Подставляя тестируемые значения f в HPR (у вас уже есть HPR для каждого из возможных приращений цены между + 3 и - 3 стандартными отклонениями на дату истечения срока или указанную дату выхода), вы можете найти среднее геомет­рическое для данного тестируемого значения f. Для этого надо пере­множить все HPR, и полученное произведение возвести в степень единицы, деленной на сумма вероятностей:

поэтому

где G(f, T) = среднее геометрическое HPR для данного тестируемого зна­чения f;

f = тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инстру­мента равна U - Y, а время, оставшееся до срока истечения, равно Т. Эту цену можно определить с помощью любой мо­дели ценообразования, которую пользователь посчитает подходящей;

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату