длинных и коротких позиций следующие:
(2. 10а) P&L% = Цена выхода / Цена входа — 1 (для длинных)
(2.106) , P&L% = Цена входа / Цена выхода - 1 (для коротких),
или мы можем использовать следующую формулу для преобразования как длинных, так и коротких:
(2.10в) P&L% = P&L в пунктах / Цена входа
Таким образом, для наших 4 гипотетических сделок мы получим следующий поток процентных выигрышей и проигрышей (с точки зрения длинных позиций):
Мы назовем этот новый поток преобразованных P&L
Чтобы учесть комиссионные и проскальзывание, вы должны уменьшить цену выхода в уравнении (2.10а) на сумму комиссионных и проскальзывания. Таким же образом вам следует увеличить цену выхода в (2.106). Если вы используете (2.10в), то должны вычесть сумму комиссионных и проскальзывания (в пунк тах) из числителя (P&L в пунктах). Затем мы определим оптимальное f по этим процентным выигрышам и проигрышам. Оптимальное f будет равно 0,09. Преобразуем это оптимальное f= 0,09 в денежный эквивалент, основываясь на текущей цене акции, с помощью формулы:
(2.11) f$ = Наибольший процентный проигрыш * Текущая цена * ($ за пункт/ -f)
Таким образом, так как наш наибольший процентный проигрыш был -0,15, текущая цена равна 100 долларам за акцию, а количество долларов на пункт равно 1 (так как мы имеем дело с покупкой только 1 акции), можно определить f$ следующим образом:
f$ =-0,15*100*1/-0,09 =-15/-0,09 = 166,67
Следует покупать 1 акцию на каждые 166,67 долларов баланса счета. Если бы мы выбрали 100 акций в качестве единицы, единственной переменной, затронутой этим изменением, было бы количество долларов за полный пункт, которое стало бы равно 100. В результате, f$ было бы 16 666,67 доллара баланса на каждые 100 акций.
Теперь допустим, что цена акции упала до 3 долларов. Наше уравнение для f$ будет таким же, но текущая станет равна 3. Таким образом, сумма для финансирования 1 акции изменится:
f$=-0,15*3* 1/-0,09 = -0,45 / -0,09=5
Теперь следует покупать 1 акцию на каждые 5 долларов баланса счета.
Отметьте, что оптимальное f не изменяется с текущей ценой акции. Оно остается на уровне 0,09. Однако f$ меняется постоянно, так как меняется цена акции. Это не означает, что вы должны обязательно изменить позицию, которую уже открыли в этот день, но если бы вы так поступили, то это пошло бы на пользу торговле. Например, если вы открываете длинную позицию по какой-либо акции и ее цена падает, количество денег, которое вам следует разместить под 1 единицу (100 акций в этом случае), также уменьшится (если оптимальное f получено из приведенньк данных). Если ваше оптимальное f получено из необработанных данных, то количество денег, необходимое для 1 единицы, не уменьшится. В обоих случаях ваш дневной баланс понижается. Использование приведенного оптимального f делает более вероятным, что ежедневное изменение размера позиции пойдет вам на пользу Использование приведенных данных для оптимального f неизбежно влечет за собой изменение побочных продуктов[7]. Мы знаем, что и оптимальное f, и среднее геометрическое (и отсюда TWR) изменятся. Средняя арифметическая сделка также изменится, потому что все сделки в прошлом должны быть пересчитаны, как если бы они происходили при текущей цене. Таким образом, в нашем предполагаемом потоке результатов по 1 акции (+2,-3,+10и-5) мы получим среднюю сделку, равную 1 доллару. Когда мы используем процентные выигрыши и проигрыши (+0,1; -0,15; +0,2 и -0,1), то получаем среднюю сделку (в процентах) +0,5. При цене 100 долларов за акцию мы получим среднюю сделку 100 * 0,05, или 5 долларов за сделку. При цене 3 доллара за акцию средняя сделка становится равной 0,15 доллара (3 * 0,05).
Средняя геометрическая сделка также изменится. Вспомните уравнение (1.14) для средней геометрической сделки:
(1.14) GAT = G * (Наибольший проигрыш /-f),
где G = (среднее геометрическое) -1;
f=оптимальная фиксированная доля. (Разумеется, наш наибольший проигрыш всегда является отрицательным числом.)
Это уравнение эквивалентно следующему:
GAT = (среднее геометрическое - 1) * f$
Мы получили новое среднее геометрическое на основе приведенных данных. Переменная f$, которая была постоянной, когда прошлые данные не приводились, теперь изменится, так как она является функцией текущей цены. Таким образом, наша средняя геометрическая сделка меняется, когда меняется цена базового инструмента.
Порог геометрической торговли также должен измениться. Вспомните уравнение (2.02) для порога геометрической торговли:
где Т = порог геометрической торговли;
ААТ = средняя арифметическая сделка;
GAT =средняя геометрическая сделка;
f= оптимальное f (от 0 до 1). Это уравнение также можно переписать следующим образом:
Т = ААТ/GAT* f$
Наконец, при сведении в единый портфель нескольких рыночных систем мы должны рассчитать ежедневные HPR. Это также функция f$:
(2.12) Дневное HPR = D$ / f$ + 1,
где D$ = долларовое изменение цены 1 единицы по сравнению с прошлым днем, т. е. (закрытие сегодня - закрытие вчера) * (доллары за пункт);
f$= текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является закрытие последнего дня.
Предположим, некая акция сегодня вечером закрылась на уровне 99 долларов. На прошлой сессии ее цена была 102 доллара. Наибольший процентный проигрыш равен -15. Если f= 0,09, тогда f$ равно:
f$ =-0,15*102*1/-0,09 =-15,3/-0,09 = 170
Так как мы имеем дело только с одной акцией, цена одного пункта составляет 1 доллар. Мы можем теперь определить сегодняшнее дневное HPR из уравнения (2.12):
(2.12) Дневное HPR = (99 -102) * 1 / 170 + 1 =-3/170+1
= -0,01764705882 + 1 = 0,9823529412
Теперь вернемся к началу нашей дискуссии. При потоке торговых P&L оптимальное f позволит получить наибольший геометрический рост (при условии, что арифметическое математическое ожидание положительное)'. Мы используем поток торговых P&L в качестве образца распределения возможных результатов в следующей сделке. Если привести к текущей цене поток прошлых прибылей и убытков, то мы сможем получить более правдоподобное распределение потенциальных прибылей и убытков для следующей сделки. Таким образом, нам следует рассчитывать оптимальное f из этого измененного распределения прибылей и убытков. Это не означает, что, используя оптимальное f, рассчитанное на основе приведенных данных, мы выиграем больше. Как видно из следующего примера, все выглядит несколько иначе:
P&L | Процент Цена f$ базового инструмента | Количество акций | Полный капитал |