единицами. К ре­альной торговле это не применимо. Риск банкротства при торговле фиксирован­ной долей счета всегда немного выше, чем в этой же системе при торговле на ос­нове постоянного количества контрактов. В действительности, нет верхнего предела суммы, которую вы можете проиг­рать за одну сделку; кривые состояния счета могут снизиться до нуля за одну сделку независимо от того, насколько высоко они расположены. Таким обра­зом, если мы торгуем бесконечно долгий период времени инструментом с нео­граниченной ответственностью, постоянным количеством контрактов или фиксированной долей счета, риск банкротства составляет 1. Банкротство гаран­тировано. Единственный способ избежать такого развития событий — поста­вить ограничение на максимальный проигрыш. Этого можно достичь, исполь­зуя опционы, когда позиция относится в дебет (если трейдер платит за премию больше, чем получает, то разница между уплаченной и полученной суммами на­зывается «дебет»)[18].

Модели ценообразования опционов

Представьте себе базовый инструмент (акция, облигация, валюта, товар и т.д.), цена которого движется вверх или вниз на 1 тик каждую последующую сделку Если мы будем измерять возможную стоимость акции через 100 тиков и рассмот­рим большое количество вариантов, то обнаружим, что полученное распределе­ние результатов — нормальное. Поведение цены в данном случае будет напоми­ нать падение шарика через доску Галтона. Если рассчитать цену опциона, исходя из того принципа, что прибыль при покупке или продаже опционов должна быть равна нулю, мы получим биномиальную модель ценообразования опционов (или, коротко, биномиальную модель). Ее иногда также называют моделью Кокса-Росса-Рубинштейна в честь ее разработчиков. Такая цена опциона основывается на его ожидаемой стоимости (его арифметическом математическом ожидании), с тем расче­том, что вы не получаете прибыль, покупая или продавая опцион и удержи­вая его до истечения срока. В этом случае говорят, что опцион справедливо оценен.

Мы не будем углубляться в математику биномиальной модели, а рассмотрим модель фондовых опционов Блэка-Шоулса и модель опционов на фьючерсы Блэ-ка. Вам следует знать, что кроме вышеперечисленных трех моделей есть другие действующие модели ценообразования опционов, которые мы не будут рассмат­ривать, хотя концепции, описанные в этой главе, применимы ко всем моделям ценообразования опционов. Для более подробного изучения математической ос­новы моделей я могу порекомендовать книгу Шелдона Нейтенберга (Volatility and Pricing Strategies by Sheldon Natenberg). Математика модели фондовых опционов Блэка-Шоулса и модели опционов на фьючерсы Блэка, которые мы будем рас­сматривать, взята из книги Нейтенберга. Тем читателям, которые желают больше узнать о концепции оптимального f и опционах, я советую прочитать фундамен­тальный труд Нейтенберга.

Давайте обсудим модель ценообразования фондовых опционов Блэка-Шоулса (далее Блэк-Шоулс). Модель названа в честь ее создателей: Фишера Блэка из Чикагского университета и Мирона Шоулса из M.I.T; впервые она была описана в 1973 году (May — June 1973 Journal of Political Economy). Блэк-Шоулс считается предельной формой биномиальной модели. В биномиальной модели нужно за­дать число тиков, определяющее движение вверх или вниз, прежде чем будет за­ фиксировано возможное значение цены. Далее следует небольшая диаграмма, которая поясняет эту мысль.

Текущая цена на первом шаге может пойти в 2-х направлениях. На втором шаге в 4-х направлениях. В биномиальной модели для расчета справедливой цены опци­она вы должны заранее определить, сколько всего периодов использовать. Блэк-Шоулс считается предельной формой биномиальной модели, так как допускает бесконечное число периодов (в теории), то есть Блэк-Шоулс подразу­мевает, что эта небольшая диаграмма будет расширяться до бесконечности. Если вы определите справедливую цену опциона по Блэку-Шоулсу, то получите тот же ответ, что и в случае с биномиальной моделью, если число периодов, используе­мых в биномиальной модели, будет стремиться к бесконечности. (Тот факт, что Блэк-Шоулс является предельной формой биномиальной модели, подразумева­ет, что биномиальная модель появилась первой, но на самом деле сначала появи­лась именно модель Блэка-Шоулса). Справедливая стоимость фондового колл-опциона по Блэку-Шоулсу рассчи­тывается следующим образом:

а пут-опциона:

где С = справедливая стоимость колл-опциона;

Р = справедливая стоимость пут-опциона;

U = цена базового инструмента;

Е = цена исполнения опциона;

Т = доля года, оставшаяся до истечения срока исполнения выраженная десятичной дробью[19];

V= годовая волатильность в процентах;

R = безрисковая ставка;

1п() = функция натурального логарифма;

N() = кумулятивная нормальная функция распределения вероятностей, задаваемая уравнением (3.21).

Для акций, по которым выплачиваются дивиденды, необходимо скорректировать переменную U и отразить текущую цену базового инструмента с учетом стоимос­ти ожидаемых дивидендов:

где Ц = ожидаемая выплата дивиденда 1;

W. = время (доля года, выраженная десятичной дробью) до выплаты L

Модель Блэка-Шоулса позволяет точно рассчитать дельту, то есть первую про­изводную цены опциона. Это мгновенная скорость изменения опциона по отно­шению к изменению U (цены базового инструмента):

(5.05) Дельта колл-опциона = N(H)

(5.06) Дельта пут-опциона = -N(-H)

Эти коэффициенты будут очень важны в Главе 7, когда мы будем рассматривать страхование портфеля.

.

Блэк сделал модель применимой к опционам на фьючерсы, механизм операций с которыми аналогичен операциям с акциями[20]. Модель ценообразования опцио­нов на фьючерсы Блэка аналогична модели фондовых опционов Блэка-Шоулса за исключением переменной Н:

При использовании модели для фьючерсов коэффициент дельта рассчитыва­ется следующим образом:

(5.08) Дельта колл-опциона = EXP(-R * Т) * N(H)

(5.09) Дельта пут-опциона = -EXP(-R * Т) * N(-H)

Для примера рассмотрим опцион, который имеет цену исполнения 600. Теку­щая рыночная цена базового инструмента равна 575, а годовая волатильность составляет 25%. Мы будем использовать модель опционов на фьючерсы, 252-дневный год и безрисковую ставку 0%. Далее мы допустим, что дата истечения опциона — 15 сентября 1991 года (910915), а текущая дата — 1 августа 1991 года (910801).

Сначала рассчитаем переменную Т, а затем преобразуем 910801 и 910915 в их юлианские эквиваленты. Для этого мы должны использовать следующий алгоритм.

1. Задайте переменные 1, 2 и 3, которые будут определять год, месяц и день, соответственно. Для нашего примера — это 1991, 8 и 1.

2. Если переменная 2 меньше 3 (январь или февраль), тогда переменная 1 будет равна значению года минус 1, а переменная 2 будет равна значению месяца плюс 13.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату