3. Если значение переменной 2 больше, чем 2 (март или дальше), тогда переменная 2 будет равна значению месяца плюс 1.

4. Задайте переменную 4, которая будет рассчитываться следующим образом:

5. Задайте переменную 5, которая будет равна целой части произведения чис­ла 0,01 и переменной 1:

Математически:

V5=INT(0,01*V1)

6. Рассчитаем юлианскую дату:

Юлианская дата = V4 + 2 - V5 + INT(0,25 * V5) Преобразуем дату 910901 в юлианскую:

Шаг 1. VI = 1991, V2 = 8, V3 = 1.

Шаг 2. Так как наш месяц в этом примере идет за январем и февралем, то этот шаг не применяется.

Шаг 3. Так как этот месяц идет за январем и февралем, то получим:

V2 = 8 + 1 = 9. Шаг 4. Теперь найдем V4:

V4 = V3 + 1 720 995 + INT(365,25 * VI) + INT(30,6001 * V2) = 1 + 1 720 995 + INT(365,25 * 1991) + INT (30,6001 * 9) = 1 + 1 720 995 + INT(727 212,75) + INT(275,4009) =1+1720 995 + 727 212 + 275 = 2 448 483 Шаг 5. Далее найдем V5:

V5=INT(0,01*V1) =INT(0,01*1991) = INT(19,91) = 19 Шаг 6. Теперь получим юлианскую дату:

Юлианская дата = V4 + 2 - V5 + INT(0,25 * V5)

= 2 448 483 + 2 - 19 + INT(0,25 * 19) = 2 448 483 + 2 - 19 + INT(4,75) = 2 448 483 + 2 - 19 + 4 = 2 448 470

Таким образом, юлианская дата 1 августа 1991 года равна 2448470. Если мы преобра­зуем дату истечения опциона 15 сентября 1991 года в юлианскую, то получим 2448515. Если использовать 365- дневный год (или точнее 365,2425-дневный по григорианско­му календарю), то, чтобы найти время, оставшееся до истечения срока, необходимо рассчитать разность между двумя юлианскими датами, затем вычесть единицу и по­лученное значение разделить на 365 (или 365,2425). Однако мы будем использовать не 365-дневный год, а 252-дневный, чтобы учесть только те дни, когда открыта биржа (будние дни минус праздники). Про­смотрим каждый день между двумя юлианскими датами, чтобы понять, являет­ся он рабочим днем или нет. Мы можем определить, каким днем недели являет­ся юлианская дата, прибавив к ее значению единицу, разделив на 7 и взяв оста­ток. Остаток будет значением от 0 до 6, соответствуя дню недели от воскресенья до субботы. Таким образом, для 1 августа 1991 года, когда юлианская дата равна 2448470:

День недели = ((2 448 470 + 1) / 7) % 7 =2448471/% 7 = ((2 448 471/7) - INT(2 448 471 / 7)) * 7 =(349 781,5714-349 781)* 7 =0,5714*7 =4

Так как 4 соответствует четвергу, мы можем утверждать, что 1 августа 1991 года является четвергом.

Теперь просмотрим все дни до даты истечения срока опциона. Если мы учтем все рабочие дни между этими двумя датами, то придем к выводу, что между (и вклю­чая) 1 августа 1991 года и 15 сентября 1991 года 32 рабочих дня. Из полученного зна­чения следует вычесть единицу, так как мы считаем первым днем 2 августа 1991 года. Таким образом, между 910801 и 910915 31 рабочий день. Теперь мы должны вычесть праздники, когда биржа закрыта. В США 2 сентября 1991 года является Днем Труда. Даже если вы живете в другой стране, биржа, где идет торговля по этому опциону, может находиться в США, и 2 сентября она будет закрыта, поэтому мы вычтем 1 из последнего результата. Таким образом, мы полу­чим 30 торговых дней до истечения срока опциона. Разделим количество торговых дней до истечения срока на число дней в году. Так как мы используем 252-дневный год, то 30/252=0,119047619. Это и есть доля года, выраженная десятичной дробью, т.е. переменная Т.

Определим переменную Н, необходимую для модели ценообразования. Так как мы используем модель для фьючерсов, то должны рассчитать Н по формуле (5.07):

Уравнение (3.21) для расчета N используется два раза. Первый раз, когда мы нахо­дим N(H), второй, когда находим N(H - V * Т^(1/2)). Мы знаем, что V * Т ^ (1/2) = 0,0862581949, поэтому Н - V* Т ^ (1/2) = - 0,4502688281 -

- 0,0862581949 = -0,536527023. Таким образом, мы должны использовать урав­ нение (3.21) со следующими вводными значениями переменной Z:

-0,4502688281 и-0,536527023. Из уравнения (3.21) получим 0,3262583 и 0,2957971 соответственно (уравнение (3.21) описано в главе 3, поэтому мы не будем повторять его здесь). Отметьте, что сейчас мы получили коэффициент дельта, мгновенную скорость изменения цены опциона по отношению к изме­ нению цены базового инструмента. Таким образом, дельта для этого опциона составляет 0,3262583. Теперь у нас есть все входные данные, необходимые для определения теоре­тической цены опциона. Подставив полученные значения в уравнение (5.01), получим:

Таким образом, в соответствии с моделью Блэка для фьючерсов справедливая сто­имость колл-опциона с ценой исполнения 600, сроком исполнения 15 сентября 1991 года, при цене базового инструмента на 1 августа 1991 года 575, при вола-тильности 25%, с учетом 252-дневного года и R = 0 составляет 10,1202625. Интересно отметить связь между опционами и базовыми инструментами, ис­пользуя вышеперечисленные модели ценообразования. Мы знаем, что 0 является наименьшей ценой опциона, но верхняя цена — это цена самого базового инстру­мента. Модели демонстрируют, что теоретическая справедливая цена опциона приближается к верхнему значению (стоимости базового инструмента U) при рос­те любой или всех трех переменных Т, R или V Это означает, что если мы, напри­мер, увеличим Т (время до срока истечения опциона) до бесконечно большого зна­чения, тогда цена опциона будет равна цене базового инструмента. В этой связи мы можем сказать, что все базовые инструменты в действительности эквивалентны опционам с бесконечным Т. Таким образом, все сказанное верно не только для опци­онов, но и для базовых инструментов, как будто они являются опционами с беско­нечным Т. Модель фондовых опционов Блэка-Шоулса и модель опционов на фьючерсы Блэка построены на определенных допущениях. Разработчики этих моделей ис­ходили из трех утверждений. Несмотря на недостатки этих утверждений, предло­женные модели все-таки довольно точны, и цены опционов будут стремиться к значениям, полученным из моделей. Первое из этих утверждений состоит в том, что опцион не может быть испол­нен до истечения срока. Это приводит к недооценке опционов американского типа, которые могут исполняться до истечения срока. Второе утверждение предполагает, что мы знаем будущую волатильность базового инструмента, и она будет оставаться постоянной в течение срока действия опциона. На самом деле это не так (т.е. волатильность изменится). Кроме того, распределение изме­нений волатильности логарифмически нормально, и эту проблему модели не учитывают[21]. Еще одно допущение модели состоит в том, что безрисковая процентная ставка остается постоянной в течение времени действия опциона. Это также не обязательно. Более того, краткосрочные ставки логарифмически нор­мально распределены. То обстоятельство, что, чем выше краткосрочные ставки, тем выше будут цены опционов, и утверждение относительно неизменности краткосрочных ставок может привести к еще большей недооценке опциона по отношению к ожидаемой цене (его правильному арифметическому математи­ческому ожиданию). Еще одно утверждение (возможно наиболее важное), которое может привести к недооценке стоимости опциона, рассчитанной с помощью модели, по отноше­нию к действительно ожидаемой стоимости, состоит в том, что логарифмы изме­нений цены распределяются нормально. Если бы опционы характеризовались не числом дней до даты истечения срока, а числом тиков вверх или вниз до истече­ния, а цена за один раз могла бы изменяться только на 1 тик и он был бы статисти­чески независим от предыдущего тика, то мы могли бы допустить существование нормального распределения. В нашем случае логарифмы изменений цены не имеют таких характеристик. Тем не менее теоретические справедливые цены, полученные с помощью моделей, используются профессионалами на рынке. Даже если некоторые трейдеры применяют модели, которые отличаются от показанных здесь, большинство из них дадут похожие теоретические справедливые

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату