Из полученной формулы следует, что чем легче атомы, из которых состоит кристалл, тем больше амплитуда их нулевых колебаний. Масса атома водорода
Рассуждая о нулевых колебаниях, физики часто пользуются величиной так называемого параметра де Бура. Им определяется отношение амплитуды нулевых колебаний к межатомному расстоянию:
Для подавляющего большинства веществ параметр де Бура мал, значительно меньше единицы. Существуют, однако, и такие, для которых он близок к единице и даже превосходит ее. К примеру, у изотопов гелия, атомы которых очень легки (? 5 • 10-24 г), оказывается ? ? 3!
Когда параметр де Бура существенно превосходит единицу, это означает, что вещество ни при какой температуре не может существовать в кристаллической фазе, если искусственно (приложением внешнего давления) не уменьшить амплитуду нулевых колебаний и таким образом уменьшить ? до значений порядка единицы и менее. Таким веществом, как известно, является гелий, который в обычных условиях остается жидким при сколь угодно низких температурах. Закристаллизовать его можно, лишь приложив давление. Небольшое, около 25 атмосфер. Естественно, может возникнуть вопрос, почему этим свойством не обладает водород, который, как известно, легче гелия. Дело в том, что параметр де Бура определяется не только массой атомов, но и энергией взаимодействия между ними. В случае водорода эта энергия больше, чем в случае гелия, и в этом причина того, что водород отвердевает, а гелий нет!
Мой рассказ об одном из непременных признаков жизни кристалла — о нулевых колебаниях — с самого начала основан на доверии читателя.
Доверием я не злоупотребил. Нулевые колебания себя обнаруживают во многих физических явлениях, главным образом в так называемых «квантовых кристаллах», у которых амплитуда нулевых колебаний велика, параметр ? достигает значений, превосходящих единицу. Это — кристаллы, для которых характерна малая энергия связи, и существуют они в области низких температур (ожиженные и закристаллизованные идеальные газы и др.). Благодаря активным нулевым колебаниям, эти кристаллы обладают аномальными механическими свойствами. А недавно физики обнаружили, что в кристаллах изотопов гелия вблизи 0 К происходит так называемая «квантовая диффузия», при которой коэффициент диффузии растет с понижением температуры. Удивительно? Удивительно, но факт!
ЕСТЬ ЛИ ПРОК В БЕСПОРЯДКЕ?
В шуточных стихах поэт четко выразил общепринятое отношение к интересующей нас проблеме «порядок — беспорядок»:
Так вот, с точки зрения кристалла поэт не прав, кристалл «видит» прок в беспорядке. Ему необходимы и порядок, и беспорядок одновременно. Утверждение немного курьезно, оно, однако, ничуть не искажает реальную ситуацию. Быть может, его следует лишь немного уточнить: кристаллу, который является воплощением и торжеством порядка, необходима некоторая доля беспорядка в расположении атомов. Беспорядок может проявлять себя в различных признаках, быть представленным в различной степени, — но обязан быть! — и, как выясняется, степень беспорядка с ростом температуры должна увеличиваться. Беспорядок — непременный признак жизни кристалла, а следовательно, прок в нем есть!
Вначале о происхождении порядка в кристалле, которое проще осмыслить, если предположить температуру кристалла равной нулю и мысленно избавиться от всяких признаков беспорядка. Упорядоченное расположение атомов в кристалле есть непосредственное следствие фундаментального закона природы: устойчивыми оказываются такие состояния, при которых энергия системы минимальна. В нашем случае «система» — это кристалл, а энергия — это сумма энергий взаимодействия между всеми парами атомов, составляющих кристалл. Среди прочих значений минимальная энергия выделена своей величиной, и среди прочих возможных расположений атомов ей должно соответствовать некоторое выделенное, т. е. упорядоченное, расположение атомов. Среди необозримого числа неупорядоченных расположений оно тем-то и выделено, что отличается порядком в расположении атомов. Какому расположению будет соответствовать порядок — неважно, а важно лишь то, что порядок! Не хаос, а порядок!
Изложенное немного туманное рассуждение можно прояснить, обсудив элементарную задачу о расположении атомов в кристалле, состоящем всего из трех одиночных атомов, находящихся на одной прямой и скрепленных одинаковыми пружинками. Этакая предельно упрощенная модель одномерного кристалла. Оказывается, что если первый и третий атомы закрепить, то пружинки, с помощью которых эти атомы взаимодействуют со вторым, будут обладать минимальной энергией в случае, когда второй атом расположен посредине между первым и третьим. Избранная упорядоченная структура, когда расстояние
Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда
Теперь о происхождении беспорядка.
Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, что с повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое пожелание вроде бы ничему не противоречит, а, исполнись оно, порядок, как в стихотворных строках, на радость поэту, сохранился бы.
Наше интуитивное желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Не уверен, надо ли говорить «к сожалению», но противоречит. Дело здесь вот в чем. Для возникновения очага беспорядка — например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие, — необходима некоторая энергия. В области будущего очага беспорядка она, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго согласованно, и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых