колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так: появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточной для возникновения очагов беспорядка, и, следовательно, концентрация очагов также должна расти.

Здесь необходимо подчеркнуть, что флуктуация в кристалле — эффект, как говорят, коллективный, в нем участвует группа атомов, а не только тот единственный, который, например, оказался выброшенным из узла в междоузлие. Просто именно он попал в область пика флуктуаций, а мог бы попасть и любой иной из коллектива атомов, оказавшихся в очаге флуктуаций.

Итак, и флуктуации энергии, и очаги беспорядка возникают самопроизвольно. Это, однако, не означает, что появление очагов беспорядка в кристалле сопровождается увеличением его энергии, ее удалением от требующегося термодинамикой минимума. Дело здесь вот в чем. Для того чтобы при повышенной температуре поддерживать в кристалле идеальный порядок (все атомы в узлах, все узлы заняты атомами!), надо было бы энергию тратить на то, чтобы гасить самопроизвольно возникающие энергетические флуктуации. Так вот, эта энергия, привнесенная в кристалл извне, делала бы его энергию заведомо неминимальной. А это и значит, что очаги беспорядка возникать будут просто потому, что не возникать они не могут. Они — условие существования кристалла при температуре, отличной от нуля. Они — непременный признак жизни кристалла.

Прочел написанное о термодинамической оправданности беспорядка и почувствовал, что, видимо, читателю нужны дополнительные разъяснения и примеры.

Примеры в научных доказательствах — вещь очень деликатная. Как известно, пример, согласующийся с утверждением, имеет силу лишь иллюстрации, а доказательной силы — никакой, а пример, противоречащий утверждению, имеет доказательную силу: он свидетельствует о том, что утверждение неверно. Скажем, полная корзина красных помидоров фактом своего существования не противоречит утверждению, «все помидоры красные», но и не доказывает его. А один зеленый помидор это утверждение начисто опровергает. И все же я приведу пример в надежде, что он поможет (!) читателю освоиться с мыслью о термодинамической оправданности беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kT/2, то п молекул имеют энергию пkT/2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности. А оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту — следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное — не доказательство, а всего лишь пример!

Коротко о структуре очагов беспорядка. Главным образом с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а о величине энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее: чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах они стоят дорог о и кристаллу противопоказаны, прока от них нет, одни расходы. А вот мелкие очаги беспорядка (лишний атом в междоузлии или вакантная позиция в узле решетки) в кристалле будут: стоят они недорого, а без очагов беспорядка, как мы выяснили, кристалл существовать не может.

Итак, в беспорядке есть прок! Однако прок проком, но должен все-таки существовать естественный предел этому беспорядку, иначе кристалл — образование упорядоченное — потеряет смысл, а с ним и право на существование.

Обсудим меру необходимого кристаллу беспорядка, избрав в качестве примера очага беспорядка в кристалле узел, не замещенный атомом, т. е. вакансию. Обсудим — значит попытаемся выяснить, сколько вакансий должно быть в кристалле при данной температуре, чтобы удовлетворить его потребность в «вакансионном беспорядке».

Вопрос надо уточнить, так как и крупинка в солонке — кристалл, и глыба каменной соли — кристалл. И поэтому следует говорить не о количестве вакансий; а об их концентрации, т. е. об отношении числа вакантных узлов n? к числу всех узлов кристаллической решетки N0:

с? = n? /N0

Так как вакансия возникает вслед за появлением достаточной флуктуации энергии, у читателя может возникнуть опасение, что число вакансий все время будет возрастать — благо источники пустоты неисчерпаемы! Этого не произойдет, так как все те вакансии, без которых кристалл может обойтись, родившись, исчезнут! Сочтем,

что на вопросы «как?» и «куда исчезнут!?» здесь отвечать не обязательно. Здесь важно лишь, что в сложное переплетении процессов рождения и исчезновения вакансий при данной температуре в кристалле автоматически поддерживается строго определенная, необходимая ему их концентрация. Именуют ее равновесной. С ростом температуры равновесная концентрация вакансий будет возрастать. Это совершенно подобно тому, что происходит в объеме под колпаком, где стоит открытый сосуд с водой. С поверхности воды некоторые молекулы испаряются, а иные конденсируются на нее, но при каждой данной температуре давление водяного пара под колпаком вполне определенное. Если считать, что образование одной вакансии предполагает необходимость во флуктуации энергии величины U? и если воспользоваться известным в физике законом (он называется экспоненциальным), который утверждает, что вероятность флуктуации энергии определенной величины U равна е- U/kT, то концентрация вакансий определится формулой

c?= е- U?/kT.

Для примера оценим значения c? в золоте при двух температурах: комнатной (Т = 300 К) и температуре плавления (Т = 1336 К). Энергия образования вакансии в золоте U? = 1,6• 1 0- 12 эрг. Помня, что константа Больцмана к = 1,38•10-16 эрг/К, легко получить интересующие нас величины: при комнатной температуре одна вакансия приходится на 1015 атомов, а при температуре плавления одна вакансия — на 104 атомов. Кристалл, как выясняется, довольствуется малым числом вакансий, но отказаться от них и не может, и не имеет нрава!

С температурой нарастающей по экспоненциальному закону беспорядок в кристалле приводит к тому, что многие его характеристики изменяются, подчиняясь этому же закону. Это относится к коэффициенту диффузии, определяющему подвижность атомов в кристаллах, к упругости пара, которая зависит от вероятности отрыва атома от поверхности кристалла, а в ионных кристаллах и к коэффициенту электропроводности, которая, как известно, осуществляется диффузионным механизмом, и ко многому другому. Мне кажется, что происходящее с кристаллом при повышении температуры можно определить так: он экспоненциально оживает. Определение, разумеется, не строгое, но правильно передающее существо происходящего.

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату