например, так. Стоя в реке по грудь в воде, быстрым движением рассечь воду рукой. Вскоре на поверхно сти воды возникнет много пузырей. Если приблизить к ним руку, она покроется множеством маленьких капель — их число значительно больше, чем число пузырей, которые лопнули под ладонью.
Явление оказалось богаче пашей фантазии. После опытов Корнфельда есть основание для построения более точной и строгой теории.
Дождь на оконном стекле
Если посмотреть во время дождя на окно, можно заметить, что дождевые капли, ударяясь об оконное стекло, часто не прилипают к нему. Они сначала движутся в направлении, определяемом их свободным полетом, а потом начинают ползти отвесно вниз. Очень часто движущаяся капля оставляет за собой влажный след. Со временем он распадается на капельки, которые оказываются столь малыми, что вначале покоятся как бы приклеенные к стеклу. Но вскоре случайная дождевая капля покрупней столкнется с одной из них, захватит ее и вместе с ней поползет отвесно по стеклу, оставляя за собой новый след.
В этом явлении многое нуждается в объяснении. Надо понять, какие капли ползут и какие застывают, приклеившись к стеклу? Почему остается за каплей след? И всегда ли он остается?
Прежде чем объяснить, что происходит с дождевой каплей на отвесном оконном стекле, рассмотрим поведение капли на гладкой поверхности твердого тела, которая с горизонтом образует некоторый угол г]з. Если бы на гладкой поверхности располагалась не жидкая капля, а, скажем, твердый кубик, происходило бы следующее. До некоторого значения угла я(з кубик по поверхности не двигался бы, а затем, при дальнейшем увеличении угла, он начал бы скользить по поверхности. Об этом подробно рассказывают в школе на уроках физики, говоря, что на кубик действуют две силы: сила трения и проекция силы тяжести на направление возможного движения кубика по наклонной плоскости. Эти силы действуют в противоположных направлениях, но сила трения не зависит от наклона плоскости, а проекция силы тяжести с увеличением угла наклона растет. И когда угол наклона превзойдет тот, при ко тором эта проекция станет равной силе трения, кубик начнет скользить по поверхности.
Теперь вернемся к капле. Схематически здесь все так же, как в случае твердого кубика: есть сила тяжести, есть и сила, подобная силе трения, только в случае капли эта сила отличается некоторой особенностью, так как капля не скользит, а переливается по поверхности. По наклонной поверхности жидкая капля перемещается, подобно гусенице. В тыльной части капли жидкость отрывается от поверхностней перетекает в лобовую часть. В этом процессе любой участок жидкости, контактирующий с поверхностью, со временем оказывается перед необходимостью оторваться от нее. Сила, которая для этого необходима, и является аналогом силы трения, действующей, когда твердый кубик скользит по твердой поверхности.
Чтобы понять, что же происходит на оконном стекле во время дождя, надо определить две конкурирующие силы: проекцию силы тяжести (
1
) и силу, необходимую для от рыва жидкости от твердой поверхности (
2
) в области тыльной части движущейся капли.
Сила
1
зависящая от угла наклона плоскости по отношению к горизонту
φ
, равна
1
=
sin
φ
(
— масса капли). Происхождение силы
2
связано с тем, что жидкость и твердое тело, на поверхности которого она находится, притягиваются друг к другу силами молекулярного взаимодействия. Это взаимодействие количественно можно охарактеризовать той энергией, которую необходимо затратить, чтобы отделить жидкость от твердой поверхности по площади контакта 1 см2. До отрыва энергия, связанная с границей жидкость — твердое, равнялась
α
жт
. После отрыва жидкости от твердого тела образуются две поверхности; одна из них — свободная поверхность жидкости с энергией
α
ж
, вторая — свободная поверхность твердого тела с энергией
α
т
. Таким образом, интересующая нас энергия отрыва в расчете на 1 см
2
равна
Δα
=
α
т
+
α
ж
—
α
жт
Имея в виду каплю, которая с поверхностью твердого тела соприкасается по кругу диаметром
2
величину силы
можно вычислить, следуя очевидной логике. Мысленно сместим каплю как целое на некоторое расстояние
х
.
При этом будет выполнена работа (или затрачена энергия), равная произведению площади, на которой жидкость оторвалась от твердого тела, на величину
Δα
. Легко сообразить, что эта площадь равна
2
и, следовательно, выполненная работа
=
2
Δα
Вы читаете Капля