красоту. Они видят практически одно и то же, так как солнце удалено от наблюдателей на расстояние, не измеримо большее, чем расстояние между ними. И еще: дойти до радуги, как и до горизонта, невозможно. И приблизиться к ней тоже невозможно, потому что это означало бы изменение всей геометрии радуги, в частности угла при вершине конуса. А его соблюдение — первейшее требование и физики и геометрии радуги.
К геометрическим сведениям следует отнести данные о порядке чередования цветов в радугах. Как известно, в радуге представлены «все цвета радуги» — от красного до фиолетового. Порядок цветов в дугах обратный, и друг к другу они обращены красными полосами. Вот и вся геометрия радуги, во всяком случае той, которая сотворена каплями в небе.
Теперь о физике радуги. Ее история восходит к 1637 г., Когда французский философ и естествоиспытатель Рене Декарт впервые понял роль капли в возникновении радуги. Свое открытие он подтвердил расчетом
,
потребовавшим затраты огромного труда: он проследил путь в сферической капле десяти тысяч параллельных солнечных лучей, Первый из них касается поверхности капли, а
деся
титысячный проходит через ее центр, т. е. расстояние между крайними лучами равно радиусу капли.
Идея Декарта была проста и естественна. Он считал, что солнечные лучи, двукратно преломляясь в капле и один раз отражаясь от ее поверхности, могут попасть в глаз наблюдателя. Проследив такой путь десяти тысяч лучей, он убедился, что все лучи, номера которых приблизительно находятся между 8500 и 8600, будут из капли выходить практически в одном и том же направлении, под углом 42° к оси радуги. Следовательно, среди прочих это направление выделено своей яркостью, и стократно усиленный луч воспримется наблюдателем. Конечно, преломляют и отражают лучи все капли, витающие в небе, но глазом будут восприняты световые сигналы лишь от тех, которые расположены на дуге, удовлетворяющей требованиям геометрии радуги, прямо следующей из ее физики.
Все рассказанное о десяти тысячах лучей касается главной радуги, той, к которой относится цифра 42°. Если же мы рассмотрим более сложный путь лучей в капле — два пре ломления при двух, а не одном отражении — получим объяснение второй дуги, к которой относится цифра 51°.
В разумности идеи Декарта можно убедиться, сотворив радугу в лаборатории с помощью одной искусственной огромной «капли». Ее можно создать, заполнив сферическую стеклянную колбу водой. Колбу надо поставить перед экраном и через отверстие в нем направить на колбу парал лельный сноп света. На экране образуется полное цветное кольцо, удовлетворяющее всем требованиям «геометрии радуги».
Появление цветов — естественное следствие зависимости показателя преломления от длины волны света. В кап
ле происходит то же, что в стеклянной призме, которая разлагает белый свет на «все цвета радуги». «Физика» радуги остается неизменной при различных «геометриях» — для радуги на мокром асфальте и на скошенной траве, покрытой росой.
Еще следует упомянуть об эффектах, связанных с малостью размера капель. Те капли, которые в основном творят радугу, имеют диаметр 0,08 — 0,20 мм. При таких размерах надо учитывать, что свет имеет волновую природу. Связанные с этим изменения элементарной теории Декарта, который рассматривает луч, а не волну, оказываются не очень существенными.
Если бы создающие радугу капли сохранялись в небе, не изменяясь, радугу можно было бы наблюдать в течение не более 2 час. 48 мин: именно за это время солнце по небосводу проходит дуговой путь в 42°. Но каплям в небе не свойственно долголетие — они испаряются, соединяются и, увеличивая свой размер, опадают. Все это отражается на радуге — на яркости ее цвета, ширине соответствующих световых полос, продолжительности ее жизни. Когда капель становится мало, радуга блекнет и исчезает.
КАПЛИ РОСЫ
Все красоты Неаполитанского залива не променяю я на ивовый куст, обрызганный росой.
Счастливый день в жизни естествоиспытателя
Слово «естествоиспытатель», сказанное об исследователе природы, звучит точнее и емче, чем слово «ученый». Естествоиспытатель — испытывающий естество, экзаменующий природу, требующий от нее ответов на вопросы.
Кристаллограф Георгий Глебович Леммлейн был истинным естествоиспытателем. Он умел как-то доверительно общаться с природой, чутко прислушиваться к тому, что отвечала она на его умело заданные вопросы. Его творческая жизнь была посвящена мертвой, каменной природе, объекты его исследований тверды и молчаливы, а ему они открывались и рассказывали о себе.
Много раз мне доводилось слышать и читать о том, что между наукой и искусством нет разделительного вала, что в истинном естествоиспытателе живет художник, а настоящий художник в какой-то мере исследователь природы. Я понимал, что эта мысль верна, почти тривиальна, но до встречи с Георгием Глебовичем она жила во мне логически разумным утверждением — и только. А в нем я увидел живое воплощение союза науки и искусства. Он был из тех естествоиспытателей, которые видят то, на что иные смотрят невидящим взором.
Расскажу об одном счастливом дне в его жизни: в тот день ему довелось почти в прямом смысле слова «одним дыханием» сделать два важных открытия. Об одном из них расскажу вскользь, а о другом подробно, так как в этом открытии капля — главный герой.
В один из дней начала 1945 г., сидя за столом в лаборатории роста кристаллов Института кристаллографии АН СССР, Георгий Глебович Леммлейн изучал под микроскопом кристалл карборунда. О том, что произошло дальше, он так рассказывал своим ученикам:
—
Я долго сидел за микроскопом и рассматривал поверхность карборунда. Очень устал и, не отодвигаясь от тубуса, тяжело выдохнул: «Уф!..» И тотчас заметил, как расцвел, обогатился рельеф поверхности кристалла. Выдохнул еще раз — уже нарочно. Снова то же самое. Понял, что это роса от моего дыхания. В этот и последующие дни стал с увлечением использовать новый трюк.
К появлению капель влаги на поверхности кристалла можно было отнестись по-разному. Например, решить, что обращаться с образцом надо поаккуратнее, не дышать на него, чтобы ничто постороннее не помешало наблюдать истинную структуру поверхности. Леммлейн, однако, поступил
Вы читаете Капля