совсем не так, а в некотором смысле наоборот. Он немедленно воспроизвел явление, специально подышал на кристалл и убедился в том, что исчезнувший узор, очерченный росинками, появился снова. А затем воспроизвел еще и еще раз и убедился, что росинки не мешают увидеть истинную структуру поверхности кристалла, а наоборот, благодаря им очерчиваются такие тонкие детали рельефа, перед которыми обычная техника оптической микроскопии бессильна. Так был открыт «метод росы» Леммлейна. Сущность его заключается о том, что на холодной поверхности кристалла роса оседает вдоль различного вида неоднородностей поверхности — ступенек, контуров микроскопических ямок — участков, где почему-либо сконцентрировался электрический заряд.
20 марта 1945 г. на заседании отделения физико-математических наук АН СССР Г. Г. Леммлейн рассказал о своем открытии. Говорил о том, что поверхность реального кристалла, кажущаяся гладкой, зеркальной, великолепно отражающая свет, в действительности имеет очень тонкий рельеф. Благодаря росинкам можно сделать видимыми в оптическом микроскопе ступеньки, высота ко торых в 10 раз меньше длины волны видимого света. В пересчете на межатомные расстояния это около 10 атомных ступенек!
«Метод росы» — великолепная находка естествоиспытателя. Беда только, что роса быстро испаряется и картина декорирования деталей структуры поверхности исчезает. Появилась мысль осаждать на поверхность кристалла росу не водяную, а из другого вещества, которое испаряется медленнее. А можно поступить иначе: осаждать росинки из вещества, которое закристаллизуется,
и детали рельефа будут декорированы не жидкими, а твердыми, застывшими капельками. Вещество было найдено — хлористый аммоний. «Метод росы» превратился в «метод инея» — надежный способ обнаружения и исследования тонкого рельефа поверхности.
А потом, как это часто бывает в истории науки, идея начала жизнь, не зависящую от автора. В разных лабораториях изыскивали вещества, с помощью которых можно декорировать детали поверхностного рельефа на различных кристаллах. Например, поверхность каменной соли можно декорировать парами золота, другие кристаллы парами висмута, сурьмы, иных веществ. Таким образом научились обнаруживать неоднородности поверхности, как принято говорить, «на атомном уровне».
В тот же день Леммлейн сделал еще одно открытие: рассматривая кристаллы карборунда, покрытые капельками росы, он заметил, что на некоторых участках поверхности росинки располагаются в форме спиралей. Это не случайные структуры — капельные спирали свидетельствуют об особом механизме роста кристаллов карборунда. Теперь этот механизм подробно изучен и получил на звание механизма слоисто-спирального роста.
Засада на росу
Эта засада не преследовала никаких агрессивных целей: ни пленять, ни тем более убивать росу мы не собирались — просто хотели проследить за тем, как на рассвете появляются росинки на листьях и паутине и как они исчезают с восходом солнца. Следили и за теми росинками, которые выпадают после дождя, когда воздух влажный и теплый. И вооружение у нас было самое мирное: кинокамера, фотокамера и лампа со вспышкой. А наши трофеи — отснятые пленки и свежие наблюдения из числа тех, которые лишенная эмоций оптика не регистрирует.
Вначале немного сведений о росе, заимствованных из школьного учебника. В окружающем нас воздухе всегда имеется некоторое количество влаги. Есть, однако, предел ее содержанию, и если почему-либо в воздухе влаги оказалось больше этого предельного количества, она начнет выпадать, оседая на различных предметах отдельными каплями. Чем выше температура воздуха, тем большее количество влаги может в нем находиться, не выпадая в росу. Если же воздух, содержащий определенное количество влаги, охладить, при некоторой температуре имеющийся в нем запас влаги станет предельным и появится роса. Этот процесс подобен тому, что происходит в стакане воды с растворенной в ней солью. Охлаждая воду, мы увидим, что при некоторой температуре на дне стакана начнут появляться кристаллики соли — подобие росы.
Любопытное наблюдение. Когда солнце, согревая воздух, начинает высушивать росу на траве, создается впечатление, будто росинки становятся крупнее. В какой-то мере это только впечатление, потому что раньше других испаряются мелкие капли, а оставшиеся крупные росинки способствуют впечатлению, будто средний размер увеличился. А в какой-то мере увеличение росинок действительно происходит, во всяком случае может происходить, поскольку избыточная упругость пара вблизи изогнутой поверхности росинок
Δ
и радиус кривизны их поверхности связаны соотношением
Δ
≈
1/
, то вблизи крупных росинок
Δ
меньше, чем вблизи мелких. И поэтому может происходить перенос влаги от мелких росинок к крупным. Именно об этом было подробно рассказано в очерке «Капля пустоты» на примере реальных капель и на примере пор.
Дождевые росинки обычно крупнее тех, которые возникают на рассвете. Капли падающего дождя редко задерживаются на паутине: иногда они ее рвут, а иногда, задержавшись на мгновение, продолжают свой полет на землю, и лишь капли моросящего дождя оседают на ее нитях. А когда дождь прошел
и воздух в избытке напитан влагой, на паутине появ ляется обильная роса: осевшие из влажного воздуха росинки располагаются вдоль нитей паутины, изгибая их. Самые крупные капли оседают на переплетениях нитей — в узлах паутины. Они и живут дольше других, когда со временем росинки, испаряясь, исчезают с паутины.
Две подборки фотографий, которыми иллюстрируется очерк, небольшая часть наших трофеев.
Вы читаете Капля