не содержит противоречий) налагается условие, что количество выводов не может превышать количество исходных посылок.

В соответствии с последними замечаниями, при рассмотрении логических моделей следует выделять два типа моделей: модели, решаемые по силлогической схеме, и модели, решаемые по полисиллогической схеме. Первый способ анализа системы высказываний требует достаточно громоздких логических вычислений, для которых трудно реализовать процедуры сокращения операций перебора, поскольку пары высказываний должны быть подобраны на основе применения семантических критериев (иначе получится задача, составленная из высказываний типа: «в огороде бузина = Истина, а в Киеве — дядька = Ложно» — выводы из такой системы посылок строить дело неблагодарное). Для полисиллогических моделей существуют методы сокращения вычислений, однако вопросам методологического и технологического обеспечения решения полисиллогизмов в настоящее время уделяется недостаточное внимание. На сегодня теоретическими и прикладными вопросами, связанными с решением полисиллогичеких задач, занимается сравнительно небольшое число ученых, среди которых — наши соотечественники Б.А. Кулик и А.А. Зенкин. Актуальность методов решения полисиллогизмов объясняется ростом потребностей, связанных с анализом потоков сообщений, потенциально содержащих противоречивые высказывания, либо предоставляющих неполную аргументацию, для анализа чего и целесообразно использовать методы решения полисиллогизмов.

Надо сказать, что один из методов решения полисиллогизмов был предложен математиком и логиком Ч. Доджсоном (литературный псевдоним — JI. Кэрролл), обильно «насорившим» соритами в своих книгах «Алиса в стране чудес», «История с узелками» и других.

Так, например, рассмотрим следующий полисиллогизм Кэррола:

1) «Все малые дети неразумны».

2) «Все, кто укрощает крокодилов, заслуживают уважения».

3) «Все неразумные люди не заслуживают уважения».

Необходимо определить, что следует из этих посылок.

Пытаясь решить подобную задачу в рамках аристотелевой силлогистики, нам пришлось бы последовательно подбирать подходящие пары суждений, получать из них следствия до тех пор, пока не будут исчерпаны все возможности. Это при росте числа утверждений оказалось бы чрезвычайно сложной задачей, результат решения которой не всегда приводит к однозначному выводу.

Л. Кэррол разработал оригинальную методику решения полисиллогизмов. Начальный этап решения таких задач может быть представлен в виде следующей последовательности операций (эти этапы присутствуют как у Л. Кэррола, так и в методике Б.А. Кулика):

— определение основных терминов, из которых состоит система посылок;

— введение для терминов системы обозначения;

— выбор подходящего универсума (множества, охватывающего все упоминаемые объекты).

В приведенном примере основными терминами данной задачи являются: «малые дети» (С), «разумные люди» (S), «те, кто укрощает крокодилов» (Т) и «те, кто заслуживает уважения» (R). Очевидно, что эти основные термины представляют какие-то множества в универсуме «люди». Их отрицаниями соответственно будут следующие термины: «не малые дети» (~С), «неразумные люди» (~S), «те, кто не укрощает крокодилов» (~T) и «те, кто не заслуживает уважения» (~R). Универсумом же для данной системы будет являться множество всех людей (U).

По существу, мы сформировали систему элементов формального описания предметной области, отраженной в полисиллогизме. Завершим пример, используя подход Б.А. Кулика (для прочтения символической записи достаточно припомнить школьные годы)…

Итак, С С T CI R S CI R (знак С символизирует отношение включения множеств). — Именно так будет выглядеть запись базовых суждений сорита. По школьным годам помнится, что операция инверсии знаков у обеих частей неравенства приводит к интересным результатам (превращению знака «больше» в знак «меньше» и т. д.). В нашем случае такая аналогия вполне уместна: операция отрицания поставленная перед каждым из терминов приведет к инверсии отношения включения, то есть получим:

S с= С; R^T; R<^S. То есть, «Все разумные люди не являются малыми детьми» и т. п. Далее получим:

C^S,S^R =>С <^R Т (z R,R cz S =>Т ?S S^R,

R?T ^S?T

СсГ;

ГсС.

R?S,S?C ^KcC

Итого, получаем: «Все малые дети не укрощают крокодилов» и «Все, кто укрощает крокодилов, не являются малыми детьми». Расшифровать прочие утверждения читатели могут самостоятельно.

Логические модели широко используются для описания систем знаний в различных предметных областях, при этом уровень формализации описания в таких моделях существенно выше чем в логико- лингвистических. Достаточно заметить, что одному высказыванию (когнитивному элементу) логико- лингвистической модели, как правило, соответствует несколько высказываний логической модели.

Зачастую, наряду с классическим логическим формализмом, в таких моделях используется формальные средства теории множеств и теории графов, служащие для расширения возможностей по описанию и представлению отношений в логических моделях. Здесь прослеживается их сходство с логико — лингвистическими моделями. Так же, как и логико-лингвистические модели, логические модели позволяют осуществлять качественный анализ, однако, будучи дополнены формальными средствами и методами других разделов математики (что делается достаточно легко, поскольку логика является метаязыком как для естественного языка, так и для искусственных языков), логические модели позволяют осуществлять и строгий численный анализ.

Наиболее широкое распространение логические модели получили в области построения систем искусственного интеллекта, где они используются в качестве основы для производства логического вывода из системы посылок, зафиксированных в базе знаний, в ответ на внешний запрос.

Ограничения, связанные со спецификой предметной области (нечеткость и неполнота экспертных знаний) привели к тому, что в последние годы в отрасли построения систем искусственного интеллекта приобрели особую популярность квазиаксиоматические логические системы (подход, развиваемый отечественным ученым Д.А. Поспеловым). Такие логические системы заведомо неполны и для них не выполняется полный комплекс требований, характерных для классических (аксиоматических) систем. Более того — для большинства логических высказываний, образующих такую систему, задается область определения, в пределах которой эти высказывания сохраняют свою значимость, а все множество высказываний, на основе которых осуществляется анализ, делится на общезначимые высказывания (справедливые для всей модели) и высказывания, имеющие значимость лишь в рамках локальной системы аксиом.

Те же причины (неполнота и нечеткость экспертных знаний) сделали популярными такие направления логики, как многозначные логики (первые работы в этой области принадлежат польским

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату