распределения и параметров модели), то это свидетельствует о наличии высокого риска при принятии решения в данной реализации моделируемой системы.

Важную роль в статистических моделях играют гипотезы о характере процессов смены состояний в моделируемой системе. Так, например, весьма интересный случай представляет собой гипотеза о «марковости» процессов (получившая название в честь русского ученого А.А. Маркова — начало XX века). Марковские процессы представляют собой случай процесса с детерминированными вероятностями, для которого ранняя предыстория смены состояний системы на некотором предшествующем интервале времени несущественна для установления вероятности наступления следующего события — основное значение придается ее текущему состоянию. Если существует уверенность в марковости процесса, это существенно меняет представления о системе (она может рассматриваться как «инерционная», в большой степени зависящая от текущего ее состояния и характера возмущающего воздействия). Принцип марковости был открыт при анализе текстов на естественных языках, где вероятность появления следующего символа может быть предсказана на основе статистического анализа текстовых массивов, на данном конкретном языке.

Статистическое моделирование тесно сопряжено с имитационным моделированием, ходе которого модель объекта нередко «погружается в вероятностную (статистическую) среду», в которой проигрываются различные ситуации и режимы функционирования модели/объекта. Однако имитационные модели могут реализовываться и в детерминированных средах.

Методы статистического моделирования широко распространены в сфере стратегического планирования и управления. Широкому распространению методов статистического моделирования в сфере оперативного управления препятствует высокая трудоемкость процесса моделирования. В основном это связано с необходимостью глубокой математической проработки моделей и высокими требованиями, предъявляемыми к математическим познаниям пользователей.

2.7 Аналитические модели

Данный класс моделей обладает высочайшей степенью формализации описаний и применяется там, где закономерности протекания процессов и функционирования системы являются хорошо изученными, а сами процессы могут рассматриваться как детерминированные. Нередко аналитические модели справедливо отождествляются с моделями детерминированных процессов. Такие ограничения являются достаточно жесткими, что ограничивает сферу их применения системами, функционирующими в стационарных условиях (т. е. в малой степени подверженных влиянию случайных возмущающих воздействий) или требуют существенного упрощения модели. В качестве примера аналитической модели может рассматриваться модель невозмущенного движения объекта в космическом пространстве.

Аналитическое математическое моделирование — это вид моделирования, в ходе которого основная роль отводится аналитической математической модели, обладающей следующими особенностями:

— аналитическая модель строится на основе некоторой теории или научной гипотезы;

— модель описывает в целом определенный аспект моделируемой системы (процесс в системе) посредством различных математических конструкций (функций или функционалов, алгебраических или дифференциальных уравнений и т. д.);

— модель позволяет получать конечные результаты исследования в виде некоторых формальных соотношений, пригодных для производства количественного или качественного анализа.

Использование ЭВМ при аналитическом моделировании не является обязательным, но решение достаточно сложных задач, сформулированных аналитически, целесообразно сопровождать проведением численных исследований на ЭВМ. Для проведения этих исследований разрабатывается соответствующий алгоритм (алгоритмическая модель), реализующая его программа, формируется массив исходных данных, после чего выполняются расчеты.

Проведению аналитического моделирования может предшествовать построение концептуальной модели с целью установления того, какой именно теоретический аппарат целесообразно использовать для моделирования данной конкретной системы.

Важным достоинством аналитического моделирования является возможность получения на его основе фундаментальных результатов и инвариантных зависимостей, которые могут быть распространены как на различные случаи использования моделируемой системы в тех или иных ситуациях и распространены на случаи рассмотрения других систем данного класса.

Основным же недостатком аналитического моделирования является то, что его применение к сложным системам требует существенной идеализации описания системы. Это связано с разрастанием объемов вычислений даже при несущественном усложнении описаний. Такая идеализация может приводить к неполной адекватности получаемых результатов, к тому, что эти результаты могут использоваться лишь в качестве первого приближения.

Однако, такие результаты могут быть использованы в ходе проведения моделирования с применением имитационных моделей в качестве неких опорных величин, относительно которых осуществляется дальнейшее исследование системы.

2.8 Имитационные модели

Данная разновидность моделей неразрывно связана с идеей машинного эксперимента. Собственно, имитационная модель — это модель комплексная, к которой не предъявляется строгих требований к применению моделей какого-то заданного типа. Идеология многомодельного исследования целиком основывается именно на этом типе моделей.

Имитационная модель — это комплексное логико-математическое представление системы, реализованное в виде программы, предназначенной для решения на ЭВМ, включающее в себя модели различного типа, и рассматривающее аспект функционирования динамической системы во времени. Данный класс моделей применяется при невозможности строгого аналитического решения задачи или проведения натурного эксперимента. Имитационные модели служат для изучения поведения во времени сложной неоднородной динамической системы, относительно структуры которой существуют точные знания или детализированные гипотезы. Для каждого элемента или подсистемы моделируемой системы в памяти ЭВМ формируется блок данных, характеризующих ее текущее и предшествующие состояния, блок логических и вычислительных процедур, описывающих изменения критических параметров во времени, а также производятся вычисления этих параметров на основе заданных значений.

Комплекс подпрограмм или относительно автономных программных агентов функционирует под управлением программы-супервизора, осуществляющей диспетчеризацию вызовов, активизирующей и приостанавливающей на время выполнение тех или иных процедур в соответствии с планом машинного эксперимента, имитируя тем самым поведение системы. В результате машинного эксперимента формируются массивы данных о состоянии различных параметров системы в различные моменты времени с привязкой к системным событиям, имитируемым в ходе эксперимента.

При этом программа-супервизор управляет процессом имитации случайных возмущающих воздействий, от которых зависит функционирование системы в целом и ее элементов и подсистем. Широкое применение здесь находит метод Монте-Карло, ранее упоминавшийся нами.

Имитационная модель — это инструмент исследования, посредством которого могут осуществляться и манипуляции с масштабом времени функционирования модели. Различают имитационные модели, функционирующие как в натуральном, так и в замедленном или ускоренном масштабе времени. Это является крайне важным при анализе поведения систем, для наблюдения которых отсутствует возможность

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату