и после добавления лактазы, что может быть объяснено тем фактом, что наиболее метаболизированный сахар увеличивает всасывание кальция. Эти данные получены для младенцев. Не ясно, улучшает ли лактоза абсорбцию кальция из молочных продуктов у взрослых. Более высокая распространенность остеопороза у людей с непереносимостью лактозы скорее связана с низким потреблением молочных продуктов, а не с эффектом лактозы на всасывание кальция.
Темно-зеленые, покрытые листвой овощи, зачастую имеют относительно высокое содержание кальция. Но всасыванию кальция часто препятствует
Жир пищи не оказывает влияния на баланс кальция у здоровых лиц. Но при наличии
Хотя индуцированная диетой (богатой белком) кальциурия служит причиной отрицательного баланса кальция, она не приводит к компенсаторному увеличению эффективности абсорбции кальция в кишке.
Взаимодействие между абсорбцией кальция и других нутриентов
Ни уровень
Поскольку и кальций, и
Не выявлено влияния кальциевых добавок на абсорбцию магния и цинка.
Фосфор
Высшие организмы используют органический фосфор, получая его из растительных источников с пищей. Скорее фосфат, чем фосфор является центром внимания нутриционной биохимии. Фосфорная кислота (Н3РO4) – сильная кислота. Моновалентные катионы (натрий, калий и аммоний) могут формировать высокорастворимые соли фосфата, а двухвалентные (кальций и магний) образуют относительно нерастворимые его соединения. Живая материя имеет огромную потребность в фосфоре. ДНК и РНК – это полимеры, основанные на мономерах сложных эфиров фосфата; высокоэнергетичная связь фосфата АТФ – основная энергия живущих организмов. Мембраны клеток состоят в значительной степени из фосфолипидов. Разнообразие ферментных функций определяется чередованием фосфорилирования и дефосфорилирования белков клеточными киназами и фосфатазами. Метаболизм зависит от функционирования фосфора как кофактора разнообразных ферментов и как основного резервуара для метаболической энергии в форме АТФ, креатин-фосфата и фосфоэнолпирувата.
Другая важная роль фосфора заключается в том, что нейтральные молекулы являются растворимыми в липидах и проходят через мембраны. Так как фосфаты ионизированы в физиологическом pH, они могут осуществлять перемещение фосфорилированных молекул в пределах клеток. Наконец, фосфор соединяется с кальцием, образуя гидроксиапатит – основное неорганическое соединение кости.
Фосфор во внеклеточных жидкостях составляет лишь 1 % от общего фосфора организма. Большая часть (70 %) общего фосфора в плазме обнаружена как составная часть органических фосфолипидов. Однако клинически полезной фракцией в плазме является неорганический фосфор, 10 % которого связано с белком, 5 % составляют комплексы с кальцием или магнием и большая часть неорганического фосфора плазмы представлена двумя фракциями ортофосфата. Фосфор обнаружен во всех клетках организма. Основные места, содержащие его, это – гидроксиапатит кости и скелетная мускулатура. Общее содержание фосфора составляет приблизительно 500 г у мужчин и 400 г у женщин.
Метаболизм фосфора
Метаболизм фосфора в организме представляет сложное взаимодействие между различными факторами, которые могут затрагивать пищеварение, абсорбцию, распределение и экскрецию его. Нерастворимые минеральные соли фосфата образуются при повышенном pH. Кислая среда желудка (pH = 2) и большей части проксимального отдела тонкой кишки (pH = 5) может играть важную роль в поддержании растворимости и биодоступности неорганического фосфора. В этом отношении важны потенциальные эффекты гипохлоргидрии (у пожилых и получающих антисекреторную терапию пациентов) на растворимость и биодоступность фосфора.
Приблизительно 60–70 % фосфора абсорбируется из обычной смешанной диеты. Показано, что всасывание фосфора находится в диапазоне от 4 до 30 мг/кг массы тела в сутки и связано с его потреблением. Физиологические состояния, характеризующиеся увеличением потребности в фосфоре (рост, беременность и кормление грудью), сопровождаются соответствующим усилением его абсорбции. У людей старших возрастных групп происходят изменения в экскреции фосфора и адаптации к фосфору пищи. Показано, что, несмотря на потребление рекомендуемой нормы фосфора, отрицательный его баланс наблюдается в возрасте старше 65 лет, за счет потери фосфора с мочой.
Клеточный и молекулярный механизм всасывания фосфора кишкой до конца не изучен. Транспорт фосфора через кишечную клетку – это активный, натрийзависимый путь. Внутриклеточные уровни фосфора относительно высоки. Паратгормон напрямую не регулирует абсорбцию фосфора в кишечнике. Назначение активного метаболита витамина D приводит к увеличению всасывания фосфора и у здоровых, и у пациентов с уремией. Регуляция общего уровня фосфора в организме требует скоординированных усилий почки и кишечника. В условиях низкого потребления фосфора с пищей кишечник увеличивает его всасывание, а почка – почечный транспорт, чтобы минимизировать его мочевые потери. Эта адаптация обеспечивается изменениями в уровне активного метаболита витамина D и паратгормона в плазме. Если адаптивные меры не в состоянии скомпенсировать низкое потребление фосфора, то фосфор кости может перераспределяться в мягкие ткани. Однако эти компенсаторные возможности не безграничны.
Фекальные потери фосфора составляют 0,9–4 мг/кг в день. Основная экскреция происходит через почки в широком диапазоне (0,1-20 %). Следовательно, почки обладают способностью эффективно регулировать фосфор плазмы. Скорость почечной реабсорбции регулируется концентрацией фосфора в плазме. Гормональный регулятор почечной реабсорбции фосфора – паратгормон и нефрогенный цАМФ. Концентрация паратгормона плазмы положительно коррелирует с уровнем экскреции фосфора с мочой. Главные признаки потери фосфора с мочой – увеличение абсорбции фосфора и повышение его уровня в плазме. Состояния, которые приводят к гиперфосфатурии – гиперпаратиреоидизм, острый дыхательный или метаболический ацидоз, мочегонные средства и увеличение внеклеточной массы фосфора. Уменьшение выделения фосфора с мочой связано с диетическим ограничением фосфора, увеличением в плазме инсулина, гормона щитовидной железы, роста или глюкагона, алкалозом, гипокалиемией и внеклеточным снижением массы фосфора.
Дефицит фосфора и гиперфосфатемия
Признаки хронического дефицита фосфора у лабораторных животных – потеря аппетита, развитие тугоподвижности в суставах, хрупкость костей и восприимчивость к инфекции. У здоровых людей существует малая вероятность развития дефицита фосфора вследствие его широкой представленности в рационах. Однако недоношенные новорожденные часто склонны к развитию рахита из- за неадекватной поставки фосфора и кальция. Витамин D-независимый гипофосфатемический рахит был впервые описан в 1937 г.
Классическое изучение дефицита фосфора у людей проводилось Лотцем в