power to 'leak' through it, to hold acceleration down to something a human body could tolerate, but the old bugaboo of '
Then, in 1384 pd, a physicist by the name of Shigematsu Radhakrishnan added another major breakthrough in the form of the inertial compensator. The compensator turned the grav wave (natural or artificial) associated with a vessel into a sort of 'inertial sump,' dumping the inertial forces of acceleration into the grav wave and thus exempting the vessel's crew from the
In practical terms, the maximum acceleration a ship can pull is defined in Figure 2.
These accelerations are with inertial compensator safety margins cut to zero. Normally, warships operate with a 20% safety margin, while MS safety margins run as high as 35%. Note also that the cargo carried by a starship is less important than the table above might suggest. The numbers in Figure 2 use mass as the determining factor, but the
Note also that in 1900 pd, 8,500,000 tons represented the edge of a plateau in inertial compensator capability. Above 8,500,000 tons, warship accelerations fell off by approximately 1
In 1502 pd, the first practical countergravity generator was developed by the Anderson Shipbuilding Corporation of New Glasgow. This had only limited applications for space travel (though it did mean cargoes could be lifted into orbit for negligible energy costs), but incalculable ones for planetary transport industries, rendering rail, road, and oceanic transport of bulk cargoes obsolete overnight. In 1581 pd, however, Dr. Ignatius Peterson, building on the work of the Anderson Corporation, Dr. Warshawski, and Dr. Radhakrishnan, mated countergrav technology with that of the impeller drive and created the first generator with sufficiently precise incremental control to produce an internal gravity field for a ship, thus permitting vessels with inertial compensators to be designed with a permanent up/down orientation. This proved a tremendous boon to long-haul starships, for it had always been difficult to design centrifugal spin sections into Warshawski Sail hyperships. Now that was no longer necessary. In addition, the decreased energy costs to transfer cargo in and out of a gravity well, coupled with the low energy and mass costs of the Warshawski sail itself
By 1790 pd, the latest generation Warshawskis could detect grav wave fronts at ranges of up to just over twenty light-seconds. A hundred years later (the time of our story) the range is up to eight light-minutes for grav wave detection and 240 light-seconds (4 light-minutes) for turbulence detection. As a result, 20th Century pd military starships routinely operate as high as the theta band of hyper-space. This translates an actual velocity of .6
In addition to his inertial compensator, Dr. Radhakrishnan also enjoys the credit for being the first to develop the math to predict and detect wormhole junctions, although the first was not actually detected until 1447 pd, many years after his death. The mechanism of the junction is still imperfectly understood, but for all intents and purposes a junction is a 'gravity fault,' or a gravitic distortion so powerful as to fold
The use of the junctions required the evolution of a new six-dimensional math, but the effort was well worthwhile, particularly since a single wormhole junction may have several different termini. Wormholes remain extremely rare phenomena, and astrophysicists continue to debate many aspects of the theories which describe them. No one has yet proposed a technique to mathematically predict the destinations of any given wormhole with reliable accuracy, but work on better models continues. At the present, mathematics can generally predict the total number of termini a wormhole will possess, but the locations of those termini cannot be ascertained without a surveying transit, and such first transits remain very tricky and dangerous.
There are other ambiguities in the current understanding of wormholes, as well. In theory, for example, one should be able to go from any terminus of a wormhole junction directly to any other. In fact, one may go from the central nexus of the junction to any of its other termini and vice versa but cannot reach any secondary terminus from another secondary. That is, one might go from point A to points B, C, or D but could not go from B to C or D without returning to A and reorienting one's vessel.
Despite their incompletely understood nature, the junctions opened a whole new aspect of FTL travel and became focusing points or funnels for trade. There were not many of them, and one certainly could not use them to travel directly to any star not connected to them, but one
In addition, of course, the discovery of wormhole junctions and a technique for their use imposed an entirely new pattern on the ongoing Diaspora. Theretofore, expansion had been roughly spherical, spreading out from the center in an irregular but recognizable globular pattern. Thereafter, expansion became far more ragged as wormhole junctions gave virtually instantaneous access to far distant reaches of space. Moreover, wormhole junctions are primarily associated with mid-range main sequence stars (F, G, and K), which gives a high probability of finding habitable planets in relatively close proximity to their far termini.
Once initial access to the far end of a wormhole junction had been attained, the habitable world at the far end (if there was one) tended to act as the central focus for its own 'mini-Diaspora,' creating globular quadrants of explored space which might be light-centuries away from the next closest explored star system.
(2) Warshawski Sail Logistics
By their very natures, the impeller drive and Warshawski Sail had a tremendous impact on the size of spacecraft. With the advent of the impeller drive, mass as such ceased to be a major consideration for sublight travel. With the introduction of the Warshawski Sail, the same became true for starships, as well. In consequence, bulk cargo carriers are entirely practical. Transport of interplanetary or interstellar cargoes is actually cheaper than surface or atmospheric transportation (even with countergrav transporters), though even at 1,200