случайно съеден овцой. По всей видимости, церкария двуустки достигает этого способом, аналогичным тому, как действует упоминавшийся выше Leucochloridium. Проникая в подглоточный ганглий, этот червь, метко названный мозговым, изменяет поведение муравья. Обычно, когда становится холодно, незаряженный муравей возвращается в свое гнездо, но инфицированные муравьи забираются вместо этого на самые верхушки травинок, стискивают их своими челюстями и перестают двигаться, как бы засыпая. Здесь они подвергают себя риску быть съеденными окончательным хозяином червя. Зараженный муравей, подобно здоровому, обязательно спускается с травяного стебля, чтобы не погибнуть от полуденной жары (это было бы плохо и для паразита), но с приходом вечерней прохлады вновь подвешивает себя над землей (Love, 1980). Уиклер пишет, что при заражении в муравья попадает около пятидесяти церкарий, лишь одна из которых проникает к нему в мозг, погибая при этом: «Она приносит себя в жертву ради блага других церкарий» (Wickler, 1976). В связи с этим Уиклер ожидаемо предрекает, что группа церкарий внутри одного муравья должна оказаться полиэмбриональным клоном.

Даже еще более изощренным примером является корончатый галл — одно из немногочисленных известных раковых заболеваний растений (Kerr, 1978; Schell et al, 1979). Вызывает его, что необычно для рака, бактерия, а именно Agrobacterium. Эти бактерии могут вызывать у растения рак, только если в них содержится Ti-плазмида, маленькое колечко внехромосомной ДНК. Ti-плазмиду можно считать автономным репликатором (глава 9), хотя, как и любая другая ДНК, она не может размножаться отдельно от клеточных механизмов, сборка которых осуществляется под действием других ДНК-репликаторов, в данном случае генов хозяина.

Гены Ti-плазмиды передаются от бактериальных клеток к растительным, побуждая те к неконтролируемому делению, отчего это состояние и называют раковым. Также Ti-гены заставляют растительные клетки синтезировать в больших количествах так называемые опины — вещества, которые растение в норме не производит и использовать которые не может. Интересно здесь то, что в среде, богатой опинами, бактерии, инфицированные Ti-плазмидой, выживают и размножаются намного лучше, чем бактерии без Ti-плазмиды. Это происходит потому, что Ti-плазмида обеспечивает бактерию набором генов, позволяющих использовать опины в качестве источника вещества и энергии. Здесь почти что можно говорить о том, что Ti-плазмиды занимаются искусственным отбором, благоприятствуя инфицированным бактериям, а значит, и своим собственным копиям. Также опины действуют, по выражению Керра, как «бактериальные афродизиаки», стимулируя конъюгацию бактерий, а следовательно, и перенос плазмиды.

Керр приходит к следующему заключению: «Это чрезвычайно изящный пример биологической эволюции: бактериальные гены здесь даже проявляют явный альтруизм… У ДНК, передаваемой растению от бактерии, нет будущего — она погибнет вместе с растительной клеткой. Однако, трансформируя растительную клетку и заставляя ее синтезировать опины, она обеспечивает (а) преимущества при отборе для точно такой же ДНК в бактериальных клетках и (б) перенос этой ДНК в другие бактерии. Это пример эволюции на уровне генов, а не организмов, которые являются, возможно, не более чем носителями генов» (Kerr, 1978). (Конечно же, подобные заявления звучат для меня, как музыка, но, я надеюсь, Керр простит мне, если я публично выражу удивление беспричинной осторожностью его фразы «возможно, не более чем». Это немножко походит на высказывания вроде «Глаза — это, возможно, зеркало души» или «Я, возможно, помню чудное мгновенье». Возможно, тут постарался редактор?!) Керр продолжает: «На многих (хотя и не на всех) растениях-хозяевах внутри возникающих естественным путем корончатых галлов выживает очень мало бактерий… На первый взгляд может показаться, что патогенность не дает никакого биологического преимущества. Но стоит лишь принять в расчет производство опинов хозяином, и влияние, оказываемое им на бактерии, живущие на поверхности галла, как мощное селективное преимущество генов болезне-творности сразу же становится очевидным».

Майр обсуждает тот факт, что растения образуют галлы и тем самым предоставляют убежище насекомым, в терминах, настолько подходящих к моей идее, что я могу процитировать его дословно и практически без комментариев:

Почему… растение должно делать галл таким превосходным жилищем для насекомого, являющегося его врагом? На самом деле мы тут имеем дело с двумя различными давлениями отбора. С одной стороны, отбор воздействует на популяцию орехотворок и благоприятствует тем из них, чьи вещества, стимулирующие образование галла, обеспечивают их личинкам наилучшую защиту. Ясно, что для насекомого-галлообразователя это вопрос жизни и смерти, и потому давление отбора здесь возникает очень мощное. Противостоящее давление отбора, воздействующего на растение, будет в большинстве случаев довольно слабым, поскольку наличие нескольких галлов понизит жизнеспособность растения- хозяина лишь незначительно. Так что «компромиссное решение» будет целиком в пользу галлообразователя. Чрезмерное повышение численности орехотворок обычно сдерживается зависящими от плотности популяции факторами, не связанными с растением-хозяином (Mayr, 1963, р. 196— 19/).

Здесь Майр для объяснения того, почему растение не дает сдачи в ответ на удивительные манипуляции насекомого, использовал нечто эквивалентное принципу «жизнь/обед». Я считаю необходимым добавить только одно. Если Майр прав и галл — это адаптация, выгодная насекомому, а не растению, тогда эволюция такой адаптации могла происходить только благодаря естественному отбору генов в генофонде насекомого. Если рассуждать логически, то мы должны считать эти гены фенотипически экспрессирующимися в ткани растения в том же самом смысле, в каком некоторые другие гены насекомого — скажем, ген цвета глаз — фенотипически экспрессируются в тканях насекомого.

Коллеги, с которыми я обсуждаю теорию расширенного фенотипа, зачастую приходят к одним и тем же занимательным предположениям. Случайно ли то, что, простудившись, мы чихаем или же это вирусы манипулируют нами, чтобы повысить свои шансы попасть в другого хозяина? Не усиливают ли какие- нибудь венерические заболевания половое влечение — хотя бы только за счет вызывания зуда, как экстракт шпанской мушки? Увеличивают ли поведенческие симптомы бешенства вероятность дальнейшей передачи вируса (Bacon &: Macdonald, 1980)? «Когда собака заражается бешенством, ее характер быстро меняется. В первые день-два она часто становится более ласковой и склонна лизать людей, с которыми общается, а это опасно, так как у нее в слюне уже содержится вирус. Вскоре в ней нарастает беспокойство, и она блуждает далеко от дома, готовая укусить каждого, кто попадется ей на пути» (Британская энциклопедия, 1977). Вирус бешенства делает злыми и кусачими даже нехищных животных: зафиксированы случаи заражения людей через укусы обычно безобидных крыланов. Очевидно, что укусы хорошо способствуют передаче содержащегося в слюне вируса, но помимо этого его эффективному распространению могло бы превосходно содействовать и «беспокойное блуждание» (Hamilton &: May, 1977). Очевидно и то, что дешевые и общедоступные услуги авиакомпаний самым существенным образом повлияли на распространение заболеваний человека. Вправе ли мы задаться вопросом, а не может ли выражение «он болен путешествиями» иметь не только переносное значение?

Вероятно, читателю, так же, как и мне, такие спекуляции покажутся надуманными. Это всего лишь забавные примеры явлений, сходные с которыми могут иметь место в действительности (см. также работу Ewald, 1980, где обращается внимание на значение такого образа мыслей для медицины). Все, что мне требуется, это установить, что в некоторых случаях симптомы хозяина справедливо рассматривать как приспособление паразита — скажем, синдром Питера Пэна, вызванный у Triholium синтезированным простейшими ювенильным гормоном. Если признать это приспособлением паразита, то вывод, который я собираюсь сделать, фактически неоспорим. Если поведение или физиология хозяина — это адаптация паразита, то у паразита должны быть (или должны были быть) «гены модификации хозяина», а происходящие с хозяином изменения являются, следовательно, частью фенотипической экспрессии этих генов паразита. Расширенный фенотип генов выходит за пределы организма, в клетках которого данные гены находятся, и дотягивается до живых тканей других организмов.

Взаимосвязь между геном морской уточки Sacculina и телом краба принципиально не отличается от взаимосвязи между геном ручейника и камешком, а также на самом деле и от взаимосвязи между геном человека и кожей человека. Это первое из тех утверждений, которые я намеревался обосновать в данной главе. У него есть следствие, на которое я в несколько иных выражениях

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату