аминокислот, предсказать, какой именно белок получится в результате. (Компьютерные программы для прогнозирования формы белка существуют, но в них используется сочетание расчетов и вероятностных рассуждений, основанных на уже известной структуре белков и аминокислотных последовательностей, выявленных экспериментально с помощью рентгеновской кристаллографии. Таким образом, эти программы похожи на компьютерные программы, которые используют синоптики; впрочем, надо отметить, что предсказание структуры белков все же точнее прогноза погоды.)
Разные белки состоят из разных последовательностей аминокислот. Они одна за другой присоединяются к растущей цепи белка в порядке, который устанавливается молекулой, называемой матричной РНК (сокращенно мРНК) (рис. 1). Молекула мРНК тоже представляет собой одинарную цепочку отдельных блоков – азотистых оснований: аденина (A), цитозина (C), гуанина (G) и урацила (U). По своей структуре они сходны и по сравнению с аминокислотами не так интересны в плане химических свойств: молекулы мРНК не играют большой роли в клетке помимо регуляции последовательности аминокислот в формирующемся белке. Эта последовательность определяется последовательностью оснований в мРНК. Каждой аминокислоте соответствует свой код из трех азотистых оснований.
Рис. 1. Трансляция белка на рибосоме. Аминокислоты связываются в растущую белковую цепь согласно последовательности оснований мРНК
Последовательность оснований в молекулах мРНК определяется последовательностью оснований в ДНК. ДНК – очень длинная молекула, состоящая из комбинаций четырех азотистых оснований: аденина, цитозина, гуанина и тимина (T), которые могут располагаться в разной последовательности. Отдельные молекулы ДНК, образующие большую часть сорока шести хромосом в каждой клетке нашего тела, содержат миллионы азотистых оснований. Отдельные участки этой цепи представляют собой гены. Когда считывается генетическая информация, молекула РНК кодирует последовательность оснований ДНК (A, C, G, T) на языке своих оснований (A, C, G, U). Таким образом, РНК по сути дела является копией (транскриптом) гена в другой среде. Фактическое считывание генов производится целыми комплексами белков. Сначала они связываются с различными короткими последовательностями оснований в начале гена, АТААТ или TCACGCTGA. Разные гены имеют разные комбинации таких коротких последовательностей, маркирующих их начало, а каждая последовательность связывается с конкретным белком. Таким образом, разные сочетания белков участвуют в активации процесса считывания различных генов.
То, что разные гены активируются разными ДНК-связывающими белками, очень важно, потому что разные клетки организма должны синтезировать разные типы белков. Например, клетки кишечника производят белки, которые позволяют переваривать пищу, клетки яичников синтезируют белки для половых гормонов, а лейкоциты вырабатывают белки для борьбы с микробами. Все эти клетки содержат все гены генома, даже те, которые им никогда не понадобятся. Однако считываются только гены, необходимые конкретным клеткам, и происходит это за счет присутствия «эксклюзивных» ДНК-связывающих белков.
Теперь нам волей-неволей придется отказаться от мысли, что какой бы то ни было из этих компонентов может отвечать за развитие клетки – или эмбриона – в целом. Повторю: белки образуются только потому, что их образование диктуют (посредством мРНК) активные гены. В свою очередь, эти гены активны только потому, что их активировали уже существующие белки. Таким образом, получается замкнутый круг: контроль не сосредоточен ни в одной конкретной точке, потому что он осуществляется повсюду (рис. 2).
Рис. 2. Циклическая природа биологической логики. Белки определяют гены, которые нужно считывать, а эти гены управляют образованием новых белков. Некоторые из новых белков определяют гены, которые нужно считывать… И так далее
Цикл, схема которого изображена на рис. 2, наводит на одну интересную мысль. Для того чтобы клетка сохраняла стабильность, среди активных генов должны быть такие гены, которые определяли бы, какие белки будут связываться с последовательностями, маркирующими эти самые гены. При этом, однако, набор активных генов не должен включать какие бы то ни было белки, активирующие неактивные в настоящий момент гены. Если не будут выполнены эти условия, белки, созданные набором активных генов, не смогут поддерживать активность того же самого набора генов – некоторые из них «выключатся», другие «включатся», а в результате будет сделан совсем другой набор белков, и так далее. Эти изменения продолжатся до тех пор, пока не будет достигнуто стабильное состояние. Именно эта закономерность лежит в основе того, как клетки нашего организма преобразуются в процессе развития в клетки новых типов. Такое изменение, как правило, происходит под воздействием внешних сигналов, которые меняют способность конкретных белков активировать гены: они нарушают стабильность и вызывают переход к новому состоянию. Мы будет постоянно сталкиваться с примерами таких сигналов в последующих главах книги.
«Циклический» контроль, распределенный по всей системе, отнюдь не единственная странная особенность биологического конструирования. Есть и другая особенность, которая кажется просто фантастической, если рассматривать ее с позиции традиционной инженерии. Ее суть в том, что биологические молекулы могут самопроизвольно объединяться в структуры большего пространственного масштаба. Кирпичи и болты на это точно не способны! Этот