отношения, как например, должно было именно определяться, что в равномерно ускоренном движении существует особая пропорциональная временам скорость, к которой кроме того всегда присоединяется приращение, сообщаемое силой тяжести. Такие предложения выставляются в новой, получившей аналитическую форму механике исключительно как результаты исчисления, причем она не заботится о том, имеют ли они сами по себе самостоятельный реальный смысл, т. е. такой смысл, которому соответствует некоторое существование, не заботится также и о том, чтобы это доказать. Трудность сделать понятной связь таких определений, когда их берут в определенно реальном смысле, например, объяснить переход от просто равномерной скорости к равномерному ускорению, считается совершенно устраненной аналитическим рассмотрением, в котором сказанная связь есть простое следствие отныне прочного авторитета действий исчисления. Нахождение единственно только путем вычисления законов, выходящих за пределы опыта, т. е. таких предложений о существовании, которые сами не имеют существования, выдается за торжество науки. Но в первое, еще наивное время исчисления бесконечно-малых математики всячески старались указать и обосновать самостоятельный реальный смысл этих представленных в геометрических построениях определений и положений и применять их в таком смысле для доказательства главных положений, о которых шла речь (ср. Ньютоново доказательство основного положения его теории тяготения в Princ. mathemat. philosophiae naturalis, Hb. I, sect. II, prop. I, с астрономией Шуберта (изд. 1-е, т. III, § 20), где он вынужден признать, что дело обстоит не совсем так, т. е. что в пункте, составляющем самый нерв доказательства, дело обстоит не так, как это принимает Ньютон).
Нельзя отрицать, что в этой области многое, преимущественно при помощи тумана, напущенного бесконечно малыми, было допущено в качестве доказательства ни на каком другом основании, как только потому, что то, что получалось, всегда было заранее известно, и доказательство, построенное таким образом, что получался уже известный вывод, давало по крайней мере видимость некоторого остова доказательства, видимость, которую все же предпочитали простой вере или опытному знанию. Но я не колеблясь решаюсь сказать, что рассматриваю эту манеру только как простое фокусничество и шарлатанничание доказательствами, и причисляю к такого рода фокусничанию даже ньютоновы доказательства и, в особенности, те из них, которые принадлежат к только что приведенным, за которые превозносили Ньютона до небес и ставили выше Кеплера, утверждая, что первый доказал математически то, что второй нашел лишь опытным путем.
Пустой остов таких доказательств был воздвигнут с целью доказать физические законы. Но математика вообще не может доказать количественных определений физики, поскольку они суть законы, имеющие своим основанием качественную природу моментов; математика не может этого сделать по той простой причине, что она не есть философия, не исходит из понятия, и поэтому качественное, поскольку оно не почерпается лемматически из опыта, лежит вне ее сферы. Отстаивание чести математики, настаивание на том, что все встречающиеся в ней положения должны быть строго доказаны, заставляло ее часто забывать свои границы. Так, например, казалось противным ее достоинству просто признать опыт источником и единственным доказательством встречающихся в ней опытных положений. Позднее было достигнуто более определенное сознание этой истины; но до тех пор, пока сознание не уяснит себе различие между тем, что может быть доказано, и тем, что может быть лишь заимствовано из другого источника, равно как и различие между тем, что представляет собою лишь член аналитического разложения, и тем, что представляет собою физическое существование, до тех пор научность не сможет достигнуть строгой и чистой позиции. — А что касается указанного остова ньютоновых доказательств, то его без сомнения еще настигнет такой же справедливый суд, который настиг другое необоснованное искусственное построение Ньютона, состоявшее из оптических экспериментов и связанных с ними умозаключений. Прикладная математика еще полна такого рода варевом из опыта и рефлексии. Но подобно тому, как уже с довольно давних пор стали фактически игнорировать в науке одну часть ньютоновской оптики за другой, причем, однако, совершают ту непоследовательность, что продолжают держаться, хотя и в противоречии с этим, прочих частей ее, точно так же является фактом, что часть упомянутых обманчивых доказательств уже сама собою пришла в забвение или заменена другими доказательствами.