принципы, т. е. оправдание. Какими тщетными были, для господствовавшего до сих пор понимания этого способа действия, старания найти принципы, которые действительно разрешили бы выступающее здесь противоречие, а не извиняли бы или не прикрывали бы его ссылками на незначительность того, что согласно математическим правилам необходимо, но здесь должно быть отбрасываемо, или, что сводится к тому же, ссылками на возможность бесконечного или какого угодно приближения и т. п., — это мы показали в предшествующем примечании. Если бы всеобщее этого способа действия было абстрагировано из той действительной части математики, которая именуется диференциальным исчислением, иным образом, чем это происходило до сих пор, то эти принципы и труд, затраченный над их установлением, оказались бы столь же излишни, сколь они, взятые сами по себе, оказываются чем-то неправильным и остающимся противоречивым.

Если будем доискиваться этого своеобразия путем простого обозрения того, что имеется в этой части математики, то мы найдем в качестве ее предмета

?) уравнения, в которых какое угодно число величин (мы можем здесь остановиться вообще на двух) связано в одно определенное целое, так что эти величины, во-первых, имеют свою определенность в эмпирических величинах, как твердых пределах, а затем, в определенной связи как с последними, так и между собою, как это вообще имеет место в уравнениях; но так как здесь имеется лишь одно уравнение для обеих величин (в том случае, если величин более двух, то и число уравнений соответственно увеличивается, но всегда число уравнений будет меньше числа величин), то это — уравнения неопределенные. Во- вторых, они связаны так, что одна из тех черт, которые характерны для того способа, каким эти величины имеют здесь свою определенность, заключается в том, что они (по крайней мере одна из них) даны в уравнении в степени высшей, чем первая степень.

Относительно этого мы должны сделать несколько замечаний. Укажем, во-первых, что величины, взятые со стороны первого из вышеизложенных определений, всецело носят характер лишь таких переменных величин, какие встречаются в задачах неопределенного анализа. Они неопределенны, но так, что если одна получает откуда-нибудь извне некоторое совершенно определенное значение, т. е. некоторое числовое значение, то и другая также становится определенной, — одна есть функция другой; категории переменных величин, функций и тому подобное имеют поэтому, как уже сказано выше, для освещения той специфической определенности величин, о которой здесь идет речь, лишь формальное значение, так как они отличаются такой общностью, в которой еще не содержится то специфическое, на которое направлен весь интерес диференциального исчисления, и это специфическое не может быть выведено из них при посредстве анализа; они суть взятые сами по себе, простые, незначительные, легкие определения, которые мы делаем трудными лишь тогда, когда вкладываем в них то, чего в них нет, для того, чтобы затем получить возможность вывести его из них, а именно, когда мы приписываем им специфическое определение диференциального исчисления. — Что же касается, далее, так называемой константы, то о ней можно заметить, что она есть ближайшим образом некоторая безразличная эмпирическая величина, имеющая для переменных величин определяющее значение лишь по своему эмпирическому определенному количеству, как предел их максимума и минимума; но способ соединения такого рода констант с переменными величинами сам есть один из моментов для природы той частной функции, которую образуют эти величины. Но и наоборот, сами константы тоже суть функции. Поскольку, например, прямая линия имеет значение параметра параболы, это ее значение состоит в том, что она есть функция ; точно так же, как в разложении двучлена вообще та константа, которая есть коэфициент первого члена ряда, есть сумма корней, коэфициент второго члена — сумма их произведений по два и т. д., стало быть, эти константы суть здесь вообще функции корней. Там, где в интегральном исчислении константа определяется из данной формулы, она постольку трактуется как ее функция. Эти коэфициенты будут рассмотрены нами далее и в другом определении как функции, конкретное значение которых составляет их главный интерес.

Но то своеобразие, которым рассмотрение переменных величин в диференциальном исчислении отличается от их характера в неопределенных задачах, мы должны видеть в том, что по крайней мере одна из этих величин или даже все они имеют степень выше первой, причем опять-таки безразлично, все ли они имеют одну и ту же высшую степень или они имеют неодинаковую степень; специфическая неопределенность, которой они здесь отличаются, зависит исключительно от того, что они суть функции друг друга именно в таком степенном отношении. Благодаря этому изменение переменных величин детерминировано качественно и, стало быть, оно непрерывно, и эта непрерывность, которая сама по себе есть опять-таки лишь формальная категория некоторого тождества вообще, некоторой сохраняющейся в изменении, остающейся саморавною определенности, имеет здесь свой детерминированный смысл, и притом единственно только в степенном отношении, которое не имеет своим показателем никакого определенного количества и составляет не-количественную, пребывающую определенность отношения переменных величин. Поэтому следует возразить против формализма другого рода, что первая степень есть степень лишь в отношении к высшим степеням; сам же по себе взятый x есть лишь какое-нибудь неопределенное определенное количество. Поэтому не имеет смысла диференцировать само по себе уравнения , уравнение прямой линии, или , уравнение просто равномерной скорости. Если из или также из получается , или из получается то в такой же мере определением тангенса является или определением просто равномерной скорости . Последняя выражается через в связи с тем, что

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату