нанометров), внутри нее появляется чрезвычайно высокая напряженность электрического поля. Если вы снова уменьшитесь до размера молекулы АТФ и попробуете приблизиться к мембране, то сможете в этом убедиться: напряженность там достигает 30 мегавольт на метр – в тысячу раз выше, чем в бытовой электросети. (Почти как у разряда молнии.)

Этот огромный электрический потенциал – протон-движущая сила – приводит в движение АТФ-синтазу: поражающую воображение белковую наномашину (рис. 10). АТФ-синтаза – самый настоящий роторный двигатель, в котором поток протонов вращает коленчатый вал, взаимодействующий с каталитической головкой. За счет энергии этого взаимодействия происходит синтез АТФ. АТФ-синтаза похожа на турбину гидроэлектростанции: мембрана, как плотина, сдерживает напор протонов, которым ничего не остается, как хлынуть через турбину, вращая ротор. Это не поэтическое видение, а точное описание. Впрочем, даже оно не передает удивительной сложности белкового двигателя. Например, до сих пор не вполне ясно, как протоны связываются с погруженным в мембрану участком C-кольца; какие электростатические взаимодействия вращают это кольцо (строго в одном направлении); как кольцо сообщает вращение ротору, вызывая конформационные изменения в каталитической головке, а также как двигаются субъединицы этой головки, захватывая молекулы АДФ, Фн и спрессовывая их в молекулу АТФ. Эта наномашина с высочайшим уровнем точности столь совершенна, что ее работа сродни магии. Чем больше мы узнаем о ней, тем больше она удивляет. Некоторые даже видят в ее совершенстве доказательство существования Бога. Я считаю “чудо” результатом естественного отбора. В любом случае это, несомненно, одна из самых удивительных природных машин.

На каждые десять протонов, прошедших через АТФ-синтазу, ротор делает один полный оборот, и в матрикс высвобождается три новообразованных молекулы АТФ. Ротор может совершать более сотни оборотов в секунду. АТФ называют энергетической “валютой” жизни. АТФ-синтаза и протон-движущая сила – это также универсальные и консервативные признаки жизни. АТФ-синтаза имеется у всех бактерий, архей и эукариот (то есть во всех трех доменах жизни), за исключением небольшого числа организмов, полностью перешедших на брожение. Протонный градиент и АТФ-синтаза универсальны, как и генетический код. В моей книге АТФ-синтаза – это такой же символ жизни, как двойная спираль ДНК. Я надеюсь, что она станет таким символом и для вас.

Рис. 10. Структура АТФ-синтазы.

АТФ-синтаза – удивительный роторный двигатель, погруженный своим основанием в мембрану (внизу). Этот прекрасный рисунок Дэвида Гудселла выполнен с соблюдением пропорций, и мы можем оценить относительные размеры молекул АТФ и протонов в сравнении с белком и толщиной мембраны. Поток протонов, проходя через мембранную субъединицу (показана стрелкой), вращает встроенный в мембрану FО – ротор и прикрепленный к нему вал (стебелек). (Вращение показано стрелкой.) Вращение вала вызывает конформационные изменения в каталитической головке (субъединице F1), за счет которых осуществляется синтез АТФ из АДФ и фосфат-ионов. Сама головка не вращается, поскольку зафиксирована статором: торчащим слева жестким стержнем. Протоны изображены снизу от мембраны в форме ионов гидроксония (H3O+), то есть связанными с водой.

Главная загадка биологии

Концепцию протон-движущей силы предложил Питер Митчелл – один из самых тихих ученых-революционеров XX века. Я называю его “тихим” лишь из-за того, что область его научных изысканий – биоэнергетика – была и остается тихой заводью в бурлящем мире науки, завороженном величием ДНК. Повальное увлечение ДНК началось в 50-х годах ХХ века в Кембридже, с работ Крика и Уотсона. Митчелл был их современником. В 1978 году он также получил Нобелевскую премию, но его идеи были восприняты совсем не так легко, как идея двойной спирали, о которой Уотсон справедливо заметил, что она “настолько проста, что не могла не оказаться верной”. Идеи Митчелла были настолько непросты, что, казалось, идут вразрез со здравым смыслом. Сам по себе Митчелл был абсолютно невыносим, неутомим в споре и невероятно прекрасен (именно в этом порядке). В начале 60-х годов он из-за язвенной болезни желудка был вынужден уйти из Эдинбургского университета – вскоре после того, как опубликовал свою “хемиосмотическую теорию” (она была напечатана в “Нейчур”, как и знаменитая статья Уотсона и Крика). Термин “хемиосмос” Митчелл применил к транспорту протонов через мембрану. Примечательно, что он использовал греческое слово “осмотический” в исходном значении – буквально “проталкивающий” (чаще осмосом называют прохождение воды через полупроницаемую мембрану). Дыхательные комплексы в ходе окислительно-восстановительных реакций проталкивают протоны через тонкую мембрану против градиента концентрации.

За счет частных средств Митчелл за два года превратил в лабораторию старинный особняк неподалеку от Бодмина в Корнуолле и в 1965 году открыл там Глинновский институт. Следующие двадцать лет Митчелл и несколько других видных биоэнергетиков занимались проверкой хемиосмотической гипотезы. Взаимоотношения этих ученых не были простыми. Этот период вошел в историю биологии под названием войн из-за окислительного фосфорилирования (ox phos wars). Окислительное фосфорилирование – это механизм, сопрягающий передачу электронов на кислород с синтезом АТФ. Сейчас трудно представить, но факты, которым я посвятил несколько последних страниц, не были известны до 70-х годов. Многие из них до сих пор активно исследуются[24].

Почему идеи Митчелла вызвали такое недоверие? Отчасти потому, что они были совершенно неочевидными. То ли дело – структура ДНК, абсолютно логичная и приводящая в восторг своей красотой: две цепи служат друг для друга матрицами, а последовательность азотистых оснований кодирует аминокислотную последовательность белка. На этом фоне хемиосмотическая гипотеза смотрелась довольно дико, а в исполнении Митчелла ее вообще

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату