реле в отдельности, что равносильно инвертированию входов. Если обратиться к правилам де Моргана, то мы увидим, что такое изменение схемы приведет к тому, что элемент «И» превратится в «ИЛИ-НЕ», а «ИЛИ», соответственно, в «И-НЕ». Я советую читателю посидеть над этими соображениями и вывести таблицы истинности самостоятельно, чтобы убедиться, что все сказанное — правда. Другое полезное упражнение состоит в том, чтобы попытаться самому построить трехвходовые элементы, соответствующие уравнениям А + В + С и А х В х С (они будет состоять из трех реле).
Тем, кто не разобрался как следует в этом по необходимости кратком изложении, среди прочих источников особенно порекомендую обратиться к [16] — книге, написанной очень простым и понятным языком, ориентированным на неподготовленного читателя, но вместе с тем излагающей предмет во всех подробностях.
Ясно, что использование реле для построения логических схем — метод, мягко говоря, несовременный. Хотя в истории и отмечены случаи построения целых компьютеров на основе реле (к ним принадлежали, в частности, легендарные
* * *
Легенда о «баге»
С использованием реле в компьютерной технике связана легендарная история о возникновении термина «баг», как ошибки в программе. В буквальном переводе «bug» означает «жучок». В 1947 году между контактами одного из реле Mark-II застряла мошка, вызвав неисправность. Когда мошку извлекли, молодая сотрудница Эйкена Грейс Хоппер (позднее — крупнейший авторитет в программировании и единственная в истории женщина-адмирал флота США) приклеила ее между страницами лабораторного журнала с подписью: «первый случай выловленного бага». Страница эта сейчас хранится в музее Смитсоновского института.
* * *
Как же можно построить наши логические элементы на транзисторах? На рис. 14.4 показаны для примера схемы так называемой диодно- транзисторной логики, которая широко использовалась в производстве гибридных микросхем (т. е. еще до изобретения Нойсом и Килби твердотельной микросхемы, см.

Рис. 14.4.
В элементе «И-НЕ» (слева) в нормальном состоянии транзистор открыт, и на выходе его логический ноль, так что подача логической единицы на входы ничего не изменит. А подача логического нуля хотя бы на один из входов приведет к тому, что соответствующий диод откроется и станет шунтировать переход база-эмиттер, в результате чего транзистор закроется, и на выходе возникнет логическая единица, что соответствует функции «И-НЕ». Диод в эмиттере нужен для обеспечения надежного запирания транзистора.
На схеме справа наоборот, транзистор в нормальном состоянии заперт, и на выходе логическая единица, а подача хотя бы одной логической единицы на входы откроет соответствующий диод и через него — транзистор, на выходе тогда установится логический ноль, что соответствует функции «ИЛИ-НЕ». «Подпирающий» диод здесь не требуется, зато требуются токоограничивающие резисторы на входах.
Схему инверсии «НЕ» специально рисовать не имеет смысла, т. к. любой транзистор, включенный по схеме с общим эмиттером, как мы знаем из
В случае необходимости обычные «И» и «ИЛИ» можно соорудить из этих схем, просто добавив к ним еще по одному транзисторному каскаду, но это снизит быстродействие и повысит потребление схемы. Отсюда понятно, почему разработчикам было удобнее проектировать микросхемы с инверсией, а не с «чистыми» булевыми функциями.
В этих схемах всплывает один вопрос, который для релейных схем был неактуален: с какого именно уровня напряжение считать логическим нулем, а с