несомненно, более отвечает духу непозиционной системы. Однако при всех возможных отклонениях главным здесь остается факт, что в основе системы лежит операция суммирования.

Рис. 14.5. Циферблат часов с римскими числами

Большие числа в римской системе записывать трудно, а еще сложнее осуществлять с ними арифметические действия. Поэтому еще в древнем Вавилоне придумали позиционную систему. Позднее в Европе позиционную систему переоткрыл (видимо) Архимед, затем от греков она была воспринята индусами и арабами, а на рубеже I и II тысячелетий опять попала в Европу[19] — с тех пор мы называем цифры арабскими, хотя по справедливости их следовало бы назвать индийскими. Это была уже современная десятичная система в том виде, в котором мы ее используем по сей день, у арабов отличается только написание цифр. С тем фактом, что заимствована она именно у арабов, связано не всеми осознаваемое несоответствие порядка записи цифр в числе с привычным для нас порядком следования текста: арабы, как известно, пишут справа налево. Поэтому значение цифры в зависимости от позиции ее в записи числа возрастает именно справа налево.

* * *

Заметки на полях

Еще один нюанс, дошедший до нас от древнегреческих времен, связан с тем, что греки и римляне не знали нуля. Именно поэтому первым годом нового тысячелетия считается 2001, а не 2000 год — год с двумя нулями относится к предыдущему столетию или тысячелетию. Это происходит потому, что после последнего года до нашей эры («минус первого») идет сразу первый год нашей эры, а не нулевой. На самом деле древние греки были совсем не такими дураками и ноль игнорировали не по скудоумию. Дело в том, что в последовательности объектов, нумерованных от нуля до, например, девяти, содержится не девять предметов, а десять! Чтобы избежать этой путаницы, в быту обычно нумерацию производят, начиная с 1, тогда последний номер будет одновременно означать и количество. В электронике же и в программировании обычно принято нумеровать объекты, начиная с 0, и всегда следует помнить, что номер и количество различаются на единицу (так, байт, о котором далее, может содержать 256 возможных значений, но номер последнего значения равен 255). На всякий случай всегда следует уточнять, откуда ведется нумерация, иначе можно попасть в неприятную ситуацию (скажем, элементы строки в языке Pascal нумеруются с единицы, а в языке С — с нуля).

* * *

Позиционные системы, в отличие от непозиционных, основаны не на простом сложении входящих в них цифр, а на сложении их с учетом присвоенного им «веса» в зависимости от положения цифр в записи. Так, запись «3» и в римской системе, и в арабской означает одно и то же, а вот запись «33» в римской системе означала бы шесть, а в арабской — совсем другое число, тридцать три.

Для строгого определения позиционной системы сначала выбирается некоторое число р, которое носит название основания системы счисления. Тогда любое число в такой системе может быть представлено следующим образом:

аn·рn + an-1·pn- 1 +… + a1·p1 + a0·p0. (4)

В самой записи числа степени основания подразумеваются, а не пишутся (и для записи основания даже нет специального значка), поэтому запись будет представлять собой просто последовательность аn а0 (еще раз обратим внимание на то, что запись производится справа налево по старшинству, — обычная математическая запись выглядела бы наоборот). Отдельные позиции в записи числа называются разрядами. Например, в десятичной системе (т. е. в системе с основанием 10) полное представление четырехразрядного числа 1024 таково:

1·103 + 0·102 + 2·101 + 4·100

Ну а как можно представить число в системе счисления с другим основанием? Для любой системы с основанием р нужно ровно р различных цифр — т. е. значков для изображения чисел. Для десятичной системы их десять — это и есть известные всем символы от 0 до 9. Заметим, что выбор начертания этих значков совершенно произволен — так, у арабов и по сей день 1 обозначается, как и у нас, вертикальной палочкой, а вот цифра 2 — знаком , похожим на латинскую строчную «r».

Самые употребительные системы в настоящее время, кроме десятичной, связаны с электроникой и потому имеют непосредственное отношение к нашему повествованию. Это знаменитая двоичная система и менее известная широкой публике, но также очень распространенная шестнадцатеричная.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату