Двоичная и шестнадцатеричная системы

В двоичной системе необходимо всего два различных знака для цифр: 0 и 1. Это и вызвало столь большое ее распространение в электронике: смоделировать два состояния электронной схемы и затем их безошибочно различить неизмеримо проще, чем три, четыре и более, не говоря уж о десяти. В середине прошлого столетия советский инженер Николай Петрович Брусенцов построил вычислительную машину, которая работала в троичной системе, и потом всю свою долгую жизнь доказывал ее неоспоримые преимущества. Но несмотря на это, его изобретение так и осталось единственным примером такого рода — слишком сложна реализация электронных элементов, работающих в троичной логике.

Еще важнее, что двоичная система прекрасно согласуется как с представленными ранее логическими переменными, так и с тем фактом, что величина, могущая принимать два и только два состояния и получившая названия бит, есть естественная единица количества информации. Это было установлено в 1948 году одновременно Клодом Шенноном и Норбертом Винером, отцом кибернетики, — меньше, чем один бит, информации не бывает. Разряды двоичных чисел (т. е. чисел, представленных в двоичной системе) также стали называть битами. Слово bit — по-английски означает «кусочек, частица чего-либо». Как термин для обозначения количества информации, слово «бит», говорят, возникло от сокращения Binary digiT — «двоичная цифра».

Представление двоичных цифр с помощью уровней напряжения, как это делается в электронных устройствах, если точно такая же модель числа, как раскладывание на земле палочек и проведение черточек на бумаге. В последних случаях мы оперируем с числами вручную, по правилам арифметики, а в электронных схемах это происходит в автоматическом режиме, без участия человека — вот и вся разница! Это понятие о «модели числа» — очень важный момент, который следует хорошо осмыслить, если вы действительно хотите вникнуть в суть работы цифровых электронных схем.

Итак, запись числа в двоичной системе требует всего двух цифр, начертание которых заимствовано из десятичной системы и выглядит, как 0 и 1. Число, например, 1101 тогда будет выглядеть так:

1·23 + 1·22 + 0·21 + 1·20 = 13

Чтобы отличить запись числа в различных системах, часто внизу пишут основание системы:

11012 = 1310.

Если система не указана, то имеется в виду обычно десятичная, но не всегда — часто, когда из контекста понятно, что идет речь об электронных устройствах, не указывают не только основание два, но и под словом «разрядность» имеют в виду количество именно двоичных, а не десятичных разрядов (таков, скажем, смысл термина «24-разрядный цвет»).

Шестнадцатеричная система имеет, как ясно из ее названия, основание шестнадцать. Для того чтобы получить шестнадцать различных знаков, изобретать ничего нового не стали, а просто использовали те же цифры от 0 до 9 для первых десяти и заглавные латинские буквы от А до F для одиннадцатого-шестнадцатого знаков (часто вместо заглавных букв употребляют и строчные, с теми же значениями). Таким образом, известное нам число 1310 выразится в шестнадцатеричной системе, как просто D16. Соответствие шестнадцатеричных знаков десятичным числам следует выучить наизусть: А — 10, В — 11, С — 12, D — 13, Е — 14, F — 15. Значения больших чисел вычисляются по обычной формуле, например:

A2FC16 = 10·163 + 2·162 + 15·161 + 12·160 = 40960 + 512 + 240 + 12 = 4172410.

Перевод из одной системы счисления в другую

Как следует из изложенного, перевод в десятичную систему любых форматов не представляет сложности и при надлежащей тренировке может осуществляться даже в уме. Для того чтобы быстро переводить в десятичную систему двоичные и шестнадцатеричные числа, следует выучить наизусть таблицу степеней двойки до 16 (табл. 14.3) и представления некоторых чисел в двоичной и шестнадцатеричной формах (табл. 14.4).

Буква h добавляется к шестнадцатеричному представлению числа, чтобы отличить его от десятичного, не используя индекса 16 (в разных языках программирования есть и другие способы, см. далее). На первое время достаточно запомнить только маленькие числа, а для образования двоичных и шестнадцатеричных чисел понять принцип, остальное выучится позже само.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату