Что произойдет в такой системе, если вычесть, например, 2 из 1? Запишем это действие в двоичной системе обычным столбиком:

В первом разряде результата мы без проблем получаем 1, а уже для второго нам придется занимать 1 из старших, которые сплошь нули, поэтому представим себе, что у нас будто бы есть девятый разряд, равный 1, из которого заем в конечном итоге и происходит:

На самом деле девятиразрядное число 1 0000 0000 есть не что иное, как 256, т. е. то же самое максимальное значение плюс 1, и мы здесь выполнили две операции: прибавили к уменьшаемому эти самые 256, а затем выполнили вычитание, но уже в положительной области для всех участвующих чисел.

А что результат? Он будет равен 255, т. е. тому самому числу, которое, как мы договорились, и представляет — 1. Получается, что вычитание в такой системе происходит автоматически правильно, независимо от знака участвующих чисел. Если хотите, можете потренироваться и проверить, скажем, что будет, если в этой системе вычесть 240 из 100.

Немного смущает только эта самая операция нахождения дополнения до 2, точнее, в данном случае, до 256 — как ее осуществить на практике, если схема всего имеет 8 разрядов? В дальнейшем мы увидим, что иногда ее осуществлять вовсе не надо — некоторые электронные схемы ведут себя так, что при осуществлении вычитания вся процедура осуществляется автоматически. Особенно наглядно это выглядит для двоичных реверсивных счетчиков, которые мы будем рассматривать в главе 16.

В точности так же ведут себя и соответствующие команды в микропроцессорах — и если вы захотите произвести операцию вычитания числа 2 из содержимого восьмибитового регистра, содержащего число 1, то в регистре окажется число 255 (все единицы). А интерпретация результата — как отрицательного числа или как положительного — это уже ваши трудности.

В микропроцессорах есть обычно и команда, которая возвращает дополнение до 2, в большинстве ассемблеров она называется NEG, от слова «негативный», потому что меняет знак, если мы договариваемся считать числа «со знаком». А как ее можно было бы осуществить «вручную», не обращаясь в действительности к 9-му разряду? Вернемся к рассмотренным ранее примерам и выпишем столбиком исходные числа, результаты операции нахождения дополнения до 2 и результат еще одной манипуляции, которая представляет собой вычитание единицы из дополнения до 2, т. е., что то же самое, просто вычитания исходного числа из наивысшего числа диапазона (255):

Если мы сравним двоичные представления в верхней и нижней строках, то увидим, что они могут быть получены друг из друга путем инверсии каждого из битов. Эта операция называется нахождением дополнения до 1 (потому что число, из которого вычитается, содержит все 1 во всех разрядах; для десятичной системы аналогичная операция называется дополнение до 9). Для нахождения дополнения до 1 девятый разряд не требуется, да и схему можно построить так, чтобы никаких вычитаний не производить, а просто переворачивать биты. То есть, для полного сведения вычитания к сложению надо проделать три операции:

1. Найти дополнение до 1 для вычитаемого (инвертировать его биты).

2. Прибавить к результату 1, чтобы найти дополнение до 2.

3. Сложить уменьшаемое и дополнение до 2 для вычитаемого.

Заметим, что все сложности с этими многочисленными дополнениями связаны с наличием нуля в ряду натуральных чисел — если бы его не было, дополнение было бы всего одно, и операция вычитания упростилась. Так может, греки все же были в чем-то правы?

В заключение обратим внимание на еще одно замечательное свойство двоичных чисел, которое часто позволяет значительно облегчить операции умножения и деления, а именно: умножению на 2 соответствует операция сдвига всех разрядов числа на один разряд влево, а операции деления на 2 — вправо. Крайние разряды (старший при умножении и младший при делении) в общем случае при этом должны теряться, но в микропроцессорах есть специальный бит переноса, в который эти «потерянные» разряды помещаются. Противоположные крайние разряды (младший при умножении и старший при делении) в общем случае замещаются нулями, но могут и замещаться значением бита переноса, что позволяет без лишних проблем делить и умножать числа с разрядностью больше одного байта. Как можно догадаться, умножению и делению на более высокие степени двойки будет соответствовать операция сдвига в нужную сторону на иное (равное степени) число разрядов.

Излишне говорить, что операцию сдвига разрядов в электронных схемах производить неизмеримо проще, чем операции деления и умножения. Есть и специальные схемы для этой операции — сдвиговые регистры, которые мы также будем «проходить» (в главе 16).

Дробные числа
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату