транзистор VT3 откроется, a VT4 — закроется, на выходе будет высокий логический уровень (уровень логической единицы). Если же все эмиттеры присоединены к высокому потенциалу (или просто «висят» в воздухе), то ситуация будет обратная — VT2 откроется током через переход база-коллектор VT1 (такое включение транзистора называется инверсным), и на выходе установится ноль за счет открытого транзистора VT4. Такой ТТЛ-элемент будет осуществлять функцию «И-НЕ» (логический ноль на выходе только при единицах на всех входах).

Выходной каскад ТТЛ-элемента представляет собой некое подобие комплементарного (пушпульного) каскада класса В, знакомого нам по аналоговым усилителям (см. рис. 8.2). Однако воспроизведение p-n- р-транзисторов оказалось для ТТЛ-технологии слишком сложным, потому такой каскад носит еще название псевдокомплементарного: верхний транзистор VT3 работает в режиме эмиттерного повторителя, а нижний — в схеме с общим эмиттером.

Кстати, заметим, что из-за упомянутой недоступности p-n-р-транзисторов воспроизведение схемы «ИЛИ» для ТТЛ-технологии оказалось крепким орешком, и ее схемотехника довольно существенно отличается от показанной на рис. 15.1 базовой схемы элемента «И-НЕ».

* * *

Заметки на полях

На заре транзисторной техники псевдокомплементарные каскады, подобные выходному каскаду ТТЛ, использовались — о ужас! — для усиления звука. Их структура дала основания для многочисленных попыток приспособить логические элементы, которые, в сущности, представляют собой усилители с довольно большим (несколько десятков) коэффициентом усиления, для усиления аналоговых сигналов. Излишне говорить, что результаты оказываются довольно плачевными, даже с КМОП-элементом, который построен куда более симметрично.

* * *

Как видно из схемы, ТТЛ-элемент существенно несимметричен и по входам, и по выходам. По входу напряжение логического нуля должно быть достаточно близко к «земле», при напряжении на эмиттере около 1,5 В (при стандартном для ТТЛ питании 5 В) входной транзистор уже запирается. Причем при подаче нуля нужно обеспечить отвод довольно значительного тока база-эмиттер — около 1,6 мА для стандартного элемента, отчего для элементов ТТЛ всегда оговаривается максимальное количество одновременно подсоединенных к выходу других таких элементов (стандартно — не более десятка). В то же время логическую единицу на входы можно не подавать вовсе. Практически, однако, подавать ее следует — по правилам незадействованные входы ТТЛ должны быть присоединены к питанию через резисторы 1 кОм.

Еще хуже дела обстоят на выходе: напряжение логического нуля обеспечивается открытым транзистором и действительно довольно близко к нулю — даже при нагрузке в виде десятка входов других таких же элементов оно не превышает 0,5 В, а в нормах на сигнал ТТЛ оговорена величина не более 0,8 В. А вот напряжение логической единицы довольно далеко отстоит от питания и составляет при питании 5 В в лучшем случае (без нагрузки) от 3,5 до 4 В, практически же в нормах оговаривается величина 2,4 В.

Такое балансирование десятыми вольта (напряжение нуля 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение единицы 2,4 В) приводит к тому, что все ТТЛ-микросхемы могут работать в довольно узком диапазоне напряжений питания: практически от 4,5 до 5,5 В, многие даже от 4,75 до 5,25 В, т. е. 5 В ±5 %.

Максимально допустимое напряжение питания составляет для разных ТТЛ-серий от 6 до 7 В, и при его превышении они обычно горят ясным пламенем. Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к плохой помехоустойчивости.

Самым крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление — до 2,5 мА на один такой элемент, и это без учета вытекающих токов по входу и потребления нагрузки по выходу. Так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много базовых элементов, вроде счетчиков или регистров, не требуют охлаждающего радиатора. Все перечисленное в совокупности давно бы заставило отказаться от технологии ТТЛ вообще, однако у них до некоторого времени было одно неоспоримое преимущество — высокое быстродействие, которое для базового элемента в виде, показанном на рис. 15.1, может достигать десятков мегагерц.

В дальнейшем развитие ТТЛ шло по линии уменьшения потребления и улучшения электрических характеристик, в основном за счет использования так называемых переходов Шоттки на которых падение напряжения может составлять 0,2–0,3 В вместо обычных 0,6–0,7 В (технология ТТЛШ, обозначается буквой S в наименовании серии, отечественные аналоги: серии 531 и 530). Базовая технология, которая составляла основу широко распространенной в 1960-70-х годах серии 74 без дополнительных букв в обозначении (аналоги — знаменитые отечественные серии 155 и 133), сейчас практически не используется. ТТЛ-микросхемы в настоящее время можно выбирать из вариантов, представленных малопотребляющими сериями типа 74LSxx (серии 555 и 533) или быстродействующими типа 74Fxx (серия 1531). Причем потребление последних практически равно потреблению старых базовых серий при более высоком (до 125 МГц) быстродействии, а для первых все наоборот — быстродействие сохранено на уровне базового, зато потребление питания снижено раза в три-четыре.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату