* * *
Еще один момент связан с получением стабильного опорного напряжения, поскольку это непосредственно сказывается на точности преобразования, причем абсолютно для всех АЦП и ЦАП, как мы увидим далее. В настоящее время успехи электроники позволили почти забыть про эту проблему — все крупные производители выпускают источники опорного напряжения, позволяющие достигать стабильности порядка 16 разрядов (т. е. 65 536 градаций сигнала). К тому же всегда можно исхитриться построить схему так, чтобы измерения стали относительными.
Быстродействие ЦАП рассмотренного типа в основном определяется быстродействием ключей и типом применяемой логики, и в случае КМОП-ключей не слишком высокое — примерно такое же, как у обычных КМОП-элементов.
Большинство интегральных ЦАП построено с использованием описанного принципа суммирования взвешенных токов или напряжений. Другой класс цифроаналоговых преобразователей составляют
Номенклатура аналого-цифровых преобразователей существенно больше, чем ЦАП. Однако все разнообразие их типов можно свести к трем разновидностям: это АЦП параллельного действия, АЦП последовательного приближения и интегрирующие АЦП. Рассмотрим их по порядку.
АЦП параллельного действия
АЦП параллельного действия — это зеркально отраженный простейший ЦАП на основе дешифратора, описанный в предыдущем разделе. В таких АЦП имеется делитель из
Трудности на этом пути уже описывались: схема получается крайне громоздкая, для
АЦП последовательного приближения
АЦП последовательного приближения мы рассмотрим чуть подробнее — ввиду их практической важности. Хотя самим в настоящее время такие АЦП строить также не приходится, но для успешного использования их в интегральном исполнении следует хорошо понимать, как они работают. Именно такого типа АЦП обычно встроены в микроконтроллеры (см.
Главная деталь АЦП последовательного приближения — ЦАП нужной разрядности (именно поэтому мы рассматривали ЦАП раньше, чем АЦП). На его цифровые входы подается код по определенному правилу, о котором далее. Выход ЦАП соединяется с одним из входов компаратора, на другой вход которого подается преобразуемое напряжение. Результат сравнения подается на схему управления, которая связана с регистром — формирователем кодов.
Есть несколько вариантов реализации процедуры преобразования. Самый простой выглядит следующим образом: сначала все разряды кода равны нулю. В первом такте самый старший разряд устанавливается в единицу. Если выход ЦАП при этом превысил входное напряжение, т. е. компаратор перебросился в противоположное состояние, то разряд возвращается в состояние логического нуля, в противном же случае он остается в состоянии логической единицы. В следующем такте процедуру повторяют для следующего по старшинству разряда. Такой метод позволяет за число тактов, равное числу разрядов, сформировать в регистре код, соответствующий входному напряжению. Способ довольно экономичен в смысле временных затрат, однако имеет один существенный недостаток — если за время преобразования входное напряжение меняется, то схема может ошибаться, причем иногда вплоть до полного сбоя. Поэтому в такой схеме обязательно приходится ставить на входе устройство выборки-хранения, о котором далее.
В другой модификации этой же схемы для формирования кодов используется реверсивный счетчик, подобный 561ИЕ11, с нужным числом разрядов. Выход компаратора попросту подключают к выводу переключения направления счета. Изначально счетчик сбрасывают в нули во всех разрядах, после чего подают на него тактовые импульсы. Как только счетчик досчитает до соответствующего значения кода, и выход ЦАП превысит входное напряжение, компаратор переключает направление счета, и счетчик отрабатывает назад. После окончания этого периода установления, если напряжение на входе не
