В нижнем левом углу чертежа Апиан изобразил несколько гор, вероятно, реальных – скорее всего, это были Альпы. Однако они служат просто для сокрытия того факта, что картография преобразует место в пространство. На первый взгляд такое представление кажется неверным, поскольку мы используем карты для перемещения из одного места в другое. Разве карта не описывает место? На самом деле карты заменяют символами (в данном случае булавками, воткнутыми в воображаемую панель) реальные места и помещают эти места в абстрактное пространство. По чертежу Апиана невозможно узнать, что Венеция является портом, а Вена – нет, что Эрфурт и Нюрнберг – протестантские города, а Мюнхен и Прага – католические, что эти города отличаются по величине и принадлежат разным государствам. Реальные города заменены координатами, реальные места – теоретическим пространством.
Роль геометрии усилилась после изобретения пороха: теперь крепости нужно было строить таким образом, чтобы они выдерживали попадание пушечных ядер, которые летят (если смотреть сверху) по прямой. Чтобы обеспечить фланговый огонь вдоль каждой стены, крепость требовалось спроектировать на бумаге, тщательно соизмеряя расстояния и углы. Бастионы (французы называли их trace italienne, а американские колонисты «звездным фортом») строились не только в Европе, но также в Азии и в Новом Свете – везде, где стреляли из пушек, – с конца XV в., и поэтому от военачальника любого ранга требовалось знакомство с геометрией. Новую науку фортификации преподавали математики, в том числе Галилей{438}. В шекспировской трагедии «Отелло» Яго приходит в ярость, узнав, что повышение получил не он, а Микеле Кассио, «великий арифметик»[163], знавший войну только по книгам{439}.
Чертеж Петера Апиана, иллюстрирующий долготу и широту. Из сочинения Апиана «Космография», 1524
План фортификационных сооружений Кувордена в Нидерландах, построенных в начале XVII в. Морицем Нассау, принцем Оранским. Симон Стевин давал Морицу Нассау советы относительно конструкции фортификационных сооружений, а Декарт служил в его армии
Альберти писал: «Математики измеряют форму вещей одним умом, отрешившись от всякой материи»{440}. Однако этот развод математиков с материей вскоре превратился в союз. Эпиграфом к этой главе служат знаменитые слова Галилея о том, что великая книга Вселенной написана геометрическими фигурами. Это утверждение ассоциируется с Пифагором и Платоном, но платоники эпохи Возрождения интересовались магией чисел, а не реальной математикой. Появилась такая наука, как баллистика, о которой первым отважно заявил Тарталья в своем сочинении «Новая наука» (1537). На фронтисписе книги изображен Евклид, охраняющий ворота, которые открывают не только знание баллистики, но и всей философии{441}.
Тарталья опубликовал первый перевод Евклида на современный итальянский язык (1543) и изобрел новые инструменты и методы для геодезических изменений («Разные вопросы и изобретения» (Quesiti et inventioni diverse, 1546), с помощью которых можно было вычислять расстояние до цели. Например, в 1622 г. голландская флотилия пыталась захватить португальскую колонию Макао. Математик из ордена иезуитов выполнил геометрические расчеты, чтобы определить расстояние до склада пороха, который голландцы устроили на берегу, и необходимый угол прицеливания для пушек. Прямое попадание в пороховой склад переломило ход сражения, и Макао остался португальской колонией{442}. Таким образом, научная революция математизировалась посредством живописи с применением законов перспективы, картографии (и связанных с ней навигации и геодезии), а также баллистики. Именно эти области вселяли в таких математиков, как Тарталья, Браге и Галилей (и в Леонардо тоже, в чем мы уже убедились) уверенность, что именно они, а не философы могут объяснить мир. Живопись, картография и баллистика не кажутся нам передовыми науками, но в ту эпоху они по праву считались таковыми.
Фронтиспис книги Никколо Тартальи «Новая наука», 1537. Евклид охраняет ворота в крепость знания, где стреляют из мортиры и пушки, демонстрируя траекторию снарядов. Чтобы попасть во внутренний редут, нужно пройти через математические науки, среди которых стоит сам Тарталья; внутри находится Философия в компании Аристотеля и Платона
Разные математические дисциплины были взаимосвязаны: достигнув совершенства в одной, не составляло труда изучить и все остальные. Альберти был архитектором, художником и математиком, Пьеро делла Франческа – математиком и художником, Пачоли – математиком и архитектором, Леонардо – художником и военным инженером, Диггес публиковал работы по геодезии и астрономии, великие картографы (Меркатор, Кассини) были также уважаемыми астрономами, а великие астрономы (Браге, Галлей) – картографами. Науки не существовали независимо друг от друга, а образовывали семейство с общими геометрическими методами и измерительными инструментами. Согласно стандартному переводу трактата «О вращении небесных сфер», Коперник писал, что «астрономия пишется для астрономов», но в оригинале эта фраза звучит иначе: mathemata mathematicis scribuntur («математика пишется для математиков»). Коперник предполагал, что за его рассуждениями может проследить любой математик. Он, подобно всем остальным, не ограничивался одной областью – его работы посвящены не только астрономии, но и денежной реформе. Что касается Кеплера, то он публиковал не только работы по оптике, но также математический анализ объема винных бочек (задача, напрямую связанная с его интересами в области астрономии, вычислением площади эллипса) и исследование о рациональном складировании пушечных ядер[164].
Более того, вопрос об изображении трехмерного мира на плоскости интересовал не только художников: это было главной задачей картографов, которым требовалось спроецировать шар на плоскую поверхность (высказываются даже предположения, что один из способов, предложенных Птолемеем для решения этой задачи, повлиял на Брунеллески){443}, и конструкторов солнечных часов (этим всегда занимались математики, иногда первоклассные – Региомонтан, Бенедетти), которые должны были определить, как движение Солнца в трехмерном мире будет отображаться на плоском циферблате. Лучше других это взаимопроникновение интересов иллюстрируют некоторые работы Дюрера. Альбрехт Дюрер совершил два путешествия в Италию (1494–1495; 1505–1507) с целью изучения новейших художественных приемов. Он опубликовал сочинение о применении геометрии в живописи и архитектуре («Руководство к измерению циркулем и линейкой», 1525). В 1515 г. он совместно с астрономом и картографом Иоганном Стабием составил пару небесных карт, для Северного и Южного полушарий: это были первые печатные карты звездного неба и первые (печатные и рукописные), где небо изображалось с четко обозначенной системой координат. Карты сопровождались первым рисунком Земли как сферы, сделанным по законам перспективы. В нем соединились геометрия, живопись по законам перспективы и картография.
§ 9Убеждение, что математические методы (особенно геометрические) позволяют понять мир, открыло дорогу для разного рода новых представлений. Но смогло ли оно значительно усилить власть общества над миром природы или власть одной социальной группы над другой? Цель Везалия состояла не только в приобретении знаний, но и в совершенствовании хирургии. Однако в отсутствии анестезии, антибиотиков и надежных методов предотвращения кровопотери с помощью жгутов и швов (не говоря уже о переливании) хирургия оставалась болезненной и рискованной, и зачастую операция приводила к смерти. Знания, приобретенные в результате препарирования трупов, почти (или совсем) не имели практического применения{444}.
Разумеется, в таких науках, как картография и навигация, баллистика и фортификация, ситуация была иной. Но важно видеть различия между первой парой наук и второй: одна имеет дело с пространством и местом, другая – с ударной силой. После того как моряки стали на продолжительное время удаляться от берега, им понадобились новые инструменты (компасы, а также такие устройства, как корабельная астролябия – особая модель астролябии для использования в море – или квадрант,