замкнутой поверхностью, 3-сфера представляет собой искривленный трехмерный объем. У окружности есть конечная длина (2πr), у сферы – конечная площадь поверхности (4πr2), а у 3-сферы – конечный объем (2π2r3). Если вы живете во Вселенной, представляющей собой 3-сферу, и отправляетесь на север, строго следуя этому курсу, то вернетесь в отправную точку, когда пройдете расстояние 2πr. Обогнув Вселенную, вы вернетесь домой с юга. Если вы отправились на восток и летели, никуда не сворачивая, то вернетесь на родную планету с запада, преодолев расстояние 2πr и обогнув Вселенную. Но даже если вы улетели с родной планеты вверх, то, не отклоняясь от курса, вы вернетесь домой снизу, после того как преодолеете расстояние 2πr. Это трехмерная Вселенная, в которой, как и в нашей, есть три пары направлений: север-юг, восток-запад и верх-низ. Но, в какую бы сторону вы ни отправились, вы все равно вернетесь в исходную точку. Отважный путешественник, пересекающий эйнштейновскую Вселенную, которая представляет собой 3-сферу, может исследовать далекие галактики и гарантированно вернуться домой, если будет двигаться строго по геодезической линии в любом направлении. Он в любом случае прилетит обратно домой, как бумеранг. Пространство ограничено, но у него нет ни краев, ни пределов, которые могли бы преградить ему путь.

Вселенная, представляющая собой 3-сферу, имеет конечный объем, а значит, в ней может уместиться конечное количество галактик. Например, если среднее расстояние между галактиками составляет 24 миллиона световых лет, то средний объем, приходящийся на одну галактику, составит 24 миллиона световых лет в кубе – (24 млн св. лет)3. Если радиус кривизны статической Вселенной, заключенной в 3-сферу, составляет 2400 миллионов световых лет, то объем такой статической Вселенной составит 2π2(2400 млн св. лет)3. Если разделить (2400 млн св. лет)3 на (24 млн св. лет)3, получится 1003, или один миллион. Таким образом, во Вселенной должно содержаться 2π2 миллиона галактик, то есть около 20 миллионов галактик. Если бы вы жили в статической вселенной Эйнштейна, то обнаружили бы, что галактики не движутся друг от друга и количество их конечно. Астрономы, живущие в такой Вселенной, могли бы сосчитать все галактики.

Во Вселенной, заключенной в 3-сферу, нет ни одного «привилегированного» наблюдателя; положения всех галактик подобны друг другу, а на поверхности сферы нет никаких особых точек. Любой наблюдатель на Земле может считать, что находится в начале координат (то есть сидит на верхушке шара). Любому землянину кажется, что он прямо сейчас стоит на вершине. Я ведь стою вертикально – значит, все, кто вокруг меня, должны немного наклоняться в стороны. А австралийцы вообще висят вверх тормашками. Но таким образом поставить себя в центр может кто угодно. В Пекине есть круглая платформа, которая должна изображать центр мира. Через Англию провели 0° долготы – нулевой меридиан, который проходит прямо через Гринвич (пригород Лондона, в котором расположена обсерватория). Каждый из нас может считать, что находится в центре, поскольку все точки эквивалентны. Важно, что если бы вы взялись подсчитывать галактики во Вселенной, расположенной в 3-сфере, то во всех направлениях количество галактик оказалось бы одинаковым. Такой подсчет получился бы изотропным, то есть не зависел бы от направления – в точности по закону Хаббла.

В 1917 году Эйнштейн опубликовал описание своей статической космологии. Космологическая постоянная – дополнительный член, вписанный им в уравнения, – придавала пустому пространству дополнительную кривизну, но величина этой постоянной была так мала, что не сказывалась на экспериментах по проверке общей теории относительности в масштабах Солнечной системы. Более того, при добавлении этого члена в уравнениях продолжало соблюдаться локальное сохранение энергии! Вероятно, Эйнштейн был единственным представителем своего времени, кто вообще догадался «построить» статическую Вселенную при помощи такой поправочной величины.

Между тем, в России в 1922 году Александр Фридман нашел космологическое решение исходных эйнштейновских уравнений поля (без космологической постоянной). В решении Фридмана учитывались лишь обычные звезды (или галактики). Это было динамическое (а не статическое) решение, и, соответственно, его было сложнее найти. В модели Фридмана Вселенная имела форму 3-сферы, точно как предполагал Эйнштейн, но эта модель допускала, что радиус сферы со временем может меняться. Фридман нашел решение (рис. 22.5), пространственно-временная схема которого напоминала поставленный вертикально мяч для американского футбола (он так ставится перед подачей).

Рис. 22.5. Фридмановская Вселенная Большого взрыва. На этой пространственно-временной схеме также показано всего одно пространственное измерение (окружность мяча) и время (по вертикали). Мировые линии галактик – это вертикальные швы на мяче. Это геодезические, то есть максимально прямые, линии, которые можно начертить на поверхности мяча. Под действием масс галактик пространство искривляется, и мировые линии соответствуют геодезическим в искривленном пространстве. Эта Вселенная динамическая, она начинается с Большого взрыва. На первом этапе галактики разлетаются друг от друга, при этом окружность Вселенной увеличивается. Это расширяющаяся Вселенная. Но в конечном итоге Вселенная начинает сжиматься из-за гравитационного притяжения галактик, и этот процесс завершается Большим схлопыванием. Единственным реальным элементом на этой картинке является сама поверхность мяча – все, что находится внутри и снаружи нее, можно игнорировать. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001

На этой схеме время откладывается по вертикали, причем будущее располагается сверху. Здесь показано время и одно пространственное измерение. Пространственное измерение изображено как круглое поперечное сечение (Трубландия), радиус которого изменяется в зависимости от времени. Вселенная в форме 3-сферы исходно имеет нулевой радиус в момент, соответствующий Большому взрыву (внизу). Затем она постепенно расширяется, пока величина окружности не достигает максимума (в середине мяча), а после этого начинает сжиматься, в итоге коллапсируя до нулевого радиуса в момент, именуемый «Большое схлопывание». Мировые линии галактик – это геодезические линии, идущие вдоль швов мяча, начинающиеся в момент Большого взрыва и заканчивающиеся в момент Большого схлопывания. Эти мировые линии максимально прямые. По такой линии можно провезти грузовичок от начала до конца, не прикасаясь к рулю. Здесь эйнштейновские уравнения предстают во всей красе. Пространство искривляется под действием масс галактик, и из-за кривизны пространства изгибаются сами швы на мяче – то есть мировые линии этих галактик. Чем выше мы поднимаемся от нижнего кончика мяча, тем сильнее расходятся швы, но из-за общей кривизны поверхности мяча эти линии вновь сходятся воедино к моменту Большого схлопывания. При Большом взрыве все галактики разлетаются в стороны друг от друга. Но из-за гравитационного притяжения (кривизны) это расширение останавливается на мгновение в самой середине описываемого процесса (это экватор мяча) и, наконец, в верхней части мяча галактики устремляются друг к другу. Расстояние между галактиками постепенно уменьшается, вместе с этим начинает сужаться и окружность

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату