Вот другой результат. Вообразите себе «светочасы», устройство, в котором луч света отражается по вертикали между двумя зеркалами, одно из которых расположено, скажем, на потолке, а второе на полу. Каждое отражение – это такт часов. Скорость света равна 300 000 километров в секунду или примерно 30 см в наносекунду. Одна наносекунда – это миллиардная часть секунды. Если расположить два зеркала на расстоянии всего 90 см, то часы будут тикать с частотой раз в 3 наносекунды (рис. 17.1).
Рис. 17.1. Светочасы. Мои светочасы тикают каждые 3 наносекунды. Аналогичные светочасы взял с собой астронавт, корабль которого летит относительно меня со скоростью 80 % от световой. Свет движется с постоянной скоростью: 30 сантиметров в наносекунду. Я вижу, как лучи света от часов астронавта летят по длинным полутораметровым диагональным отрезкам и, следовательно, мне кажется, что светочасы астронавта тикают каждые 5 наносекунд. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
Это очень быстрые часы. По конструкции похожи на стоячие часы с маятником, только очень быстрые. Свет будет отражаться между двумя зеркалами туда-сюда, туда-сюда. На моих светочасах он будет попадать в зеркало каждые 3 наносекунды. А теперь представьте себе астронавта, летящего на ракете со скоростью 80 % от световой и взявшего с собой аналогичные светочасы (рис. 17.1). Он летит медленнее скорости света, так что опыт сработает. С точки зрения астронавта, его часы тикают нормально, свет преодолевает путь от зеркала до зеркала за 3 наносекунды. Но если я загляну в иллюминатор его ракеты, то увижу, что его часы летят вместе с ракетой на скорости 80 % от световой, а луч света в них летит по диагональной траектории. Луч света летит снизу, но к тому времени, как он преодолеет 90 см, верхнее зеркало уже успеет сдвинуться вправо на 120 см. Свет летит по диагональной траектории, состоящей из отрезков по 150 см. Получается прямоугольный треугольник со сторонами 3–4–5: 90 см по вертикали, 120 см слева направо и гипотенуза длиной 150 см. Треугольник удовлетворяет теореме Пифагора: 32 + 42 = 52. Тогда как относительно меня свет проходит 150 см по диагонали из левой нижней точки в правую верхнюю, с точки зрения астронавта свет преодолевает 120 см слева направо. Следовательно, астронавт движется относительно меня с 4/5, или 80 %, скорости света. Поскольку мне должно казаться (согласно второму постулату), что луч света преодолевает 30 см в наносекунду, я должен сказать, что свет успевает пройти отрезок диагональной траектории длиной 150 см, из нижней точки слева в верхнюю точку справа. Именно это я и наблюдаю. Еще через 5 наносекунд он вновь опустится по диагонали и попадет в нижнее зеркало на 240 см правее, нежели в начале предыдущего отскока. Соответственно я должен сказать, что часы астронавта тикают с частотой раз в 5 наносекунд, а не раз в 3 наносекунды. Мне кажется, что его часы идут медленнее моих со скоростью 3/5 по отношению к ним.
Теперь переходим к самому интересному. Мне должно казаться, что и сердце у астронавта бьется медленнее, чем у меня (также со скоростью 3/5 от моего), либо он сам сравнит ход светочасов со своим пульсом и заметит, что они идут медленнее, и таким образом сможет логически догадаться, что движется (а это противоречит первому постулату). Любые часы, имеющиеся у него на борту, также должны замедляться, идти со скоростью 3/5 от обычной, либо он сможет понять, что движется. Если у астронавта будет мюон (это нестабильная элементарная частица тяжелее электрона), который непременно распадается, то на борту ракеты он должен распадаться медленнее. Астронавт медленнее съедает обед. Еще… он… медленнее… разговаривает. Все процессы на борту ракеты идут медленнее.
Степень замедления зависит от того, с какой скоростью движется астронавт. Если я успею состариться на 10 лет, то (согласно аналогичным расчетам с использованием светочасов[26]) астронавт за это время состарится на 10 лет умножить на √1 – (v2/c2)[27]. Если говорить о скоростях, которые слишком малы по сравнению со световой – например, скорости, с которыми мы имеем дело в повседневной жизни, – то такой коэффициент старения будет практически равен 1. Если отношение v/c невелико по сравнению с 1, то величина (v2/c2) будет совершенно крошечной по сравнению с 1; если вычесть такой мизер из 1, то останется число, практически равное 1, а квадратный корень из 1 равен 1 – таким образом, этот коэффициент существенным образом не скажется на старении астронавта. То есть астронавт состарится на те же 10 лет, что и я, и разница в возрасте у нас будет незаметна. Вот почему