Евклид перешел к доказательству сонма дивных теорем.

Пятый постулат Евклида кажется неуклюжим. Его неприглядность контрастирует с изяществом и простотой первых четырех постулатов. Математика основана не только на практике, но и на эстетике, поэтому формулировка Евклида взывает к редактуре.

Мы предлагаем вашему вниманию более простой вариант.

5'. Если дана прямая и точка, не лежащая на данной прямой, есть одна-единственная прямая, проходящая через данную точку и не пересекающая ее.

Эта альтернативная версия пятого постулата Евклида известна под названием постулат о параллельных прямых[190]. Посмотрим, что он означает.

Нам даны прямая L и точка P, не лежащая на ней. Посмотрите на рисунок. Постулат 5' утверждает, что существует другая прямая, проходящая через точку P и параллельная данной (обозначена пунктирной линией), причем одна-единственная.

Математики показали, что пятый постулат Евклида и постулат о параллельных прямых эквивалентны. Это означает, что теоремы, которые мы можем доказать на основе первых четырех постулатов и постулата 5, – те же самые, что можно доказать на основе первых четырех постулатов и постулата 5'.

Несмотря на то что формулировка 5' несколько проще, чем 5, все же она не настолько изящная и блестящая, как первые четыре. Можно ли избавиться от нее? Можно ли доказать постулат о параллельных прямых как теорему и не принимать в качестве фундаментального утверждения?

Постулат о параллельных прямых накладывает два условия: во-первых, существует прямая, проходящая через точку P и не пересекающая прямую L; во-вторых, все другие прямые, проходящие через эту точку, будут пересекать L.

Естественный способ справиться с проблемой – попробовать доказательство от противного. Мы обсуждали этот метод в главе 1. Вот его логика.

(A) Чтобы доказать существование прямой, проходящей через точку P и параллельной L, предположим, что такой прямой не существует.

(B) Чтобы доказать единственность этой прямой, предположим, что существуют две или больше прямых, проходящих через P и параллельных L.

Дальше мы выстраиваем цепочку умозаключений, пока не дойдем до противоречия. Оно свидетельствует о фундаментальной ошибочности утверждения (A) или (B) – смотря что мы предположили:

• Если предположение об отсутствии вышеописанной прямой приводит к противоречию, она существует.

• Если предположение о существовании нескольких вышеописанных прямых приводит к противоречию, такая прямая единственная.

Математики бились как проклятые – и потерпели поражение. Говоря точнее, результат казался диким (треугольник с суммой углов не 180°), но противоречия в нем не было.

Ничего страшного. Математики не тешат себя надеждой, что могут справиться с любой проблемой, встающей на их пути. Мы продолжаем работать как проклятые и передаем пас следующим поколениям, уповая, что у наших преемников возникнут идеи получше.

В случае постулата о параллельных прямых идеи получше возникли, но не такого рода, как можно было ожидать[191].

Что такое прямая?

Прямая представляет собой множество точек, как и окружность или треугольник. Это множество точек обладает определенными свойствами.

Интуитивно мы понимаем, что такое прямая: она тонкая (у нее нет толщины), ровная и бесконечно продолжается в обоих направлениях. Но такое описание – еще не математическое определение. Чем прямая линия отличается от кривой? Закрепить эту идею не так-то просто.

Как мы уже отмечали, у Евклида был собственный подход к определению базовых объектов, сегодня мы воспринимаем точки и прямые иначе. У нас есть объекты под названием «точки» и множества этих объектов под названием «прямые». Если оба рода объектов удовлетворяют постулатам Евклида, получается система под названием евклидова геометрия.

Если мы изменим утверждения Евклида о фундаментальных свойствах точек и прямых, мы получим геометрию иного типа. Рассмотрим простой пример. Для начала мы сохраним первый постулат Евклида, который гласит:

1. Если даны две точки, есть одна и только одна прямая, проходящая через эти точки.

А дальше включим новый постулат, переворачивающий роли прямых и точек:

1'. Если даны две прямые, есть одна и только одна точка, принадлежащая данным двум прямым[192].

Должным образом выбранные «точки» и «прямые» могут удовлетворить тому и другому условию. Пусть у нас есть семь точек. Назовем их незамысловатым образом: 1, 2, 3, 4, 5, 6 и 7. Кроме того, у нас есть семь прямых: {1, 2, 3}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {2, 4, 6}, {3, 4, 5} и {3, 6, 7}.

Эти «прямые» не имеют ничего общего с «прямыми» Евклида[193]. Каждая состоит всего из трех точек!

Мы легко удостоверимся, что в этой системе из семи точек и семи прямых верны оба постулата.

• Проверим постулат 1. Возьмем любые две точки, скажем 2 и 5. Они принадлежат прямой {2, 5, 7}, и нет другой прямой, содержащей эти две точки. Вы можете самостоятельно рассмотреть все пары среди семи точек и увидеть, что всегда есть прямая, и только одна, содержащая обе точки.

• Проверим постулат 1'. Выберем любые две прямые, например {1, 4, 7} и {3, 4, 5}. Обе содержат точку 4, и это единственная общая для них точка. Вы можете рассмотреть все пары среди семи прямых и увидеть, что они всегда имеют общую точку, причем всего одну.

Странно рассуждать о геометрии без чертежей. К счастью, можно изобразить данную систему с помощью диаграммы. Семь точек помечены кружочками, а прямые представляют собой отрезки (в большинстве случаев) и окружность (в случае прямой {2, 4, 6}).

Хитрость заключается в том, что мы подобрали некие объекты, назвали их «точками», а затем по определенному принципу сформировали множества этих объектов и назвали их «прямыми». Если все объекты удовлетворяют нашим постулатам, мы по праву можем называть их точками и прямыми, даже если они не имеют ничего общего с точками и прямыми в понимании Евклида.

Евклидовы точки и линии можно определить следующим образом. Точка – пара действительных чисел (x, y). Прямая – множество точек (x, y), удовлетворяющих уравнению ax + bx + c = 0, где числа a и b не равны нулю. С помощью этих определений (и соответствующих определений окружности и угла) можно доказать, что постулаты Евклида выполняются.

Если мы воспринимаем точки как пары чисел, а прямые как решения уравнений, то оказываемся на декартовой плоскости, названной в честь математика и философа Рене Декарта.

Вся плоскость внутри круга

Мы стали своевольничать с употреблением слов «точка» и «прямая». Мы можем назвать что угодно «точкой» и сгруппировать эти точки в множества под названием «прямые», если все они удовлетворяют надлежащим постулатам. Что значит надлежащим? Для Евклида несомненными утверждениями были те пять постулатов, которые мы привели в начале главы.

Я сейчас расскажу о новых определениях «точек» и «прямых», необходимых для создания гиперболической геометрии. В этой геометрии все точки лежат внутри одной окружности. Область внутри нее мы будем называть гиперболической плоскостью[194].

Прямые на гиперболической плоскости представляют собой дуги окружностей. Это обескураживает: как дуга может быть

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату