изнутри и мы вырезаем ножницами одну из граней, а потом растягиваем многогранник, пока он не станет плоским. На рисунке показано, что получится в итоге.

Начнем с октаэдра. На рисунке ясно видно: V = 6. Во время подсчета граней легко ошибиться и сказать, что их семь, но не будем забывать об одной вырезанной грани. Таким образом, F = 8.

А вот маленький трюк для подсчета ребер. Пометьте штрихом ребра, сходящиеся у каждой вершины, таким образом:

Сколько штрихов на рисунке? У каждой вершины сходятся по четыре ребра, поэтому количество штрихов в четыре раза больше количества вершин: 4 × V = 4 × 6 = 24. С другой стороны, на каждом ребре по два штриха, и если количество штрихов равно 2E, то E = 12.

Продолжим в том же духе с икосаэдром. На плоском рисунке мы видим три вершины у острых углов, шесть, образующих правильный шестиугольник, и еще три в центре. Итого V = 3 + 6 + 3 = 12. Посчитаем грани: 9 треугольников на плоском рисунке имеют вершины при острых углах, вершины еще 9 совпадают с вершинами шестиугольника, плюс еще один треугольник лежит в сердцевине. Итого 9 + 9 + 1 = 19, и не будем забывать про вырезанную грань; таким образом, F = 20. Для подсчета ребер мы используем трюк со штрихами. Пометив ребра, сходящиеся у вершин, мы нанесем в общей сложности 5 × 12 = 60 штрихов, по пять около каждой вершины. Поскольку на каждом ребре оказалось по два штриха, E = 30.

Пришло время вернуться к великолепной формуле, показывающей соотношение вершин, ребер и граней многогранников; впервые она была открыта Эйлером[174], а теперь (я надеюсь) ее заново открыли вы.

Отмечу, что сумма количества вершин и граней на 2 больше количества ребер. Например, у куба V = 8, а F = 6, следовательно, V + F = 14, что на 2 больше E = 12. Таким образом, V + F = E + 2. Обычно формулу Эйлера записывают следующим образом:

V – E + F = 2. (A)

Посмотрим, как это работает.

Мы расплющили наши многогранники[175], вынув одну грань и растянув то, что осталось. Количество областей на плоском рисунке в точности равно количеству граней F: вынутая грань соответствует всему контуру целиком, другие грани соответствуют контурам внутри. Таким образом, количество вершин, ребер и областей равно V, E и F соответственно. Алгебраическое выражение V – E + F имеет определенное числовое значение; сейчас я постараюсь убедить вас, что оно неизменно равно 2.

Для начала я сотру одно ребро. Что произойдет с количеством вершин, ребер и областей? Количество вершин не поменялось – я всего лишь стер ребро. Количество ребер, естественно, уменьшилось на 1. А что произошло с количеством граней? Как можно видеть на рисунке, две грани по обе стороны исчезнувшего ребра слились в одну грань, так что количество граней уменьшилось на единицу.

Обозначим количество вершин/ребер/граней на новом рисунке через V', E' и F'. Что мы имеем?

V' = V,

E' = E – 1,

F' = F – 1.

Следовательно, V' – E' + F' = V – (E – 1) + (F – 1) = V – E + F.

Если я докажу, что V' – E' + F' = 2, то и V – E + F = 2.

Моя стратегия такова: я стану стирать всё новые и новые ребра. Всякий раз количество ребер и количество граней будет уменьшаться на единицу. Но мне следует проявить осторожность. Рано или поздно я дойду до ребра, слева и справа от которого будет одна и та же область; поглядите на жирную черточку на рисунке. Я не должен стирать ребра таким образом, чтобы рисунок оказался разбит на несколько не связанных между собою замкнутых областей.

Сколько бы ребер я ни стер, число V – E + F (чему бы оно ни было равно) останется неизменным.

В конце концов все области сольются в одну (в наших обозначениях F = 1), и я не смогу безболезненно извлечь больше ни одного ребра (посмотрите на рисунок). После этого я перейду ко второй части своих разрушительных поисков.

На рисунке больше нет замкнутых областей. Я возьму любую вершину наугад и отправлюсь в вояж по ребрам и вершинам. Этот путь не сможет привести меня в исходную вершину, поскольку замкнутых областей больше нет; рано или поздно он закончится (так как количество вершин конечно), в некоторой вершине он зайдет в тупик. Эту вершину называют лист.

Я начну срывать листья и отламывать «ветки», на которых они держатся. Что произойдет с числом V – E + F? Количество вершин будет уменьшаться на 1 (сорванный лист), количество ребер тоже будет уменьшаться на 1 (сорванная «ветвь»), а количество граней останется неизменным (у нас всего одна грань). Иными словами,

V' = V – 1,

E' = E – 1,

F' = F = 1.

Таким образом, V' – E' + F' = (V – 1) – (E – 1) + F = V – E + F. Чему бы ни было равно число V – E + F, после уничтожения очередного листа и ребра оно останется прежним.

Сколько бы листов и соответствующих им ребер я ни стирал, замкнутых областей на рисунке не появится. Я буду выбирать новый лист, стирать его и соответствующее ребро и т. д. В конце концов на графе останется всего одна вершина. Но число V – E + F не поменяется.

Подведу итог. Я расплющил многогранник. Удалил ребра таким образом, чтобы замкнутые области не оставались изолированными друг от друга; в конце концов число замкнутых областей свелось к нулю; значения V, E и F менялись, но число V – E + F оставалось неизменным. Дальше я стал срывать листья и стирать соответствующие им ребра, пока не осталась одна-единственная уцелевшая вершина. И вновь значения V, E и F менялись, но число V – E + F прошло без потерь сквозь все катаклизмы. Итак, у меня есть одна вершина, одна область (ничем не ограниченное пространство вокруг этой вершины) и ни одного ребра. Иными словами, в финале моих деструктивных операций V = 1, E = 0, F = 1. Если я подставлю эти числа в формулу V – E + F, то получу 2. Так я подтвердил тождество (A) – формулу Эйлера для многогранников!

Есть там кто еще?

Мы познакомились с пятью правильными многогранниками: тетраэдром, кубом, октаэдром, додекаэдром и икосаэдром. С помощью формулы (A) я покажу, что других правильных многогранников не существует.

Я буду использовать пять букв для параметров правильного многогранника. Первые три вам хорошо знакомы: V – количество

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату