Иначе говоря, формула Декарта работает и в том случае, когда мы вычисляем радиус малой окружности внутри трех, касающихся друг друга, и в том случае, когда мы ищем радиус большой окружности, охватывающей эти три.
Если корень уравнения отрицательный, речь идет об описанной окружности; в случае положительного корня речь идет о вписанной окружности. А теперь другой вопрос: что означает нулевая кривизна? Сама формулировка подсказывает, что «окружность» с нулевой кривизной представляет собой прямую линию[165].
Решение Декарта в 1930-е годы заново открыл Фредерик Содди[166]. Он был настолько поражен элегантностью формулы, что сочинил стихотворение под названием «Прицельный поцелуй». Вот вторая строфа, где зарифмована формула (*):
Окружности четыреСошлись для поцелуя,Пригожая малюткаСкривилась больше всех.А если единичкуНа радиус делю я,То это будет кривизна.Невиданный успех!Евклид буквально онемел…Дружок, скорей берись за мел:Коль нулевая кривизна,То линия прямая;Коль минус перед кривизной,Целуйся, обнимая.«Сложи криви́зны, возведиВ квадрат всю эту сумму,И на два ну-ка подели!» –Кричу я тугодуму. –«Теперь все это приравняйК величине другой:Криви́зны возведи в квадрат,Сплюсуй, мой дорогой».Две суммы в точности равны,И все от радости пьяны:Целуются, милуются,Собой не налюбуются!Есть еще один вариант поцелуя четырех окружностей. На сей раз они будут касаться друг друга попарно, выстроившись в кольцо. Иными словами, касаются первая и вторая окружности, вторая и третья, третья и четвертая, четвертая и первая. Итого мы имеем четыре точки соприкосновения.
Удивительно, но факт: эти четыре точки всегда будут лежать на другой окружности, пятой по счету.
Теорема Паскаля о шестиугольникеЯ завершу эту главу теоремой, доказанной Блезом Паскалем[167].
Расставим на окружности шесть точек: A, B, C, D, E и F. Соединим их отрезками, чтобы возник перекрученный шестиугольник:
A → D → B → F → C → E → A.
Теорема Паскаля говорит о том, что три точки, в которых пересекаются пары отрезков DB и CE, AD и FC, BF и EA (на чертеже они отмечены буквами X, Y, Z соответственно) всегда будут лежать на одной прямой!
Отмечу, что теорема Паскаля верна и в случае шести точек, лежащих на эллипсе[168].
Предположим, все круги имеют радиус 1. Центры четырех соседних кругов расположены на вершинах ромба со стороной 2.
Ромб состоит из двух равносторонних треугольников. Высота равностороннего треугольника[169] со стороной 2 равна √3. Таким образом, площадь треугольников равна
Площадь ромба вдвое больше: 2√3
Теперь давайте подумаем, какой процент площадей кругов покрывает ромб. Два круга покрыты на 1/6 и еще два – на 1/3. Все вместе дает площадь одного круга с радиусом 1, то есть π.
Соотношение покрытой кругами площади к общей площади равно
Глава 16
Платоновы тела
Равносторонний треугольник – это геометрическая фигура, состоящая из трех равных между собой отрезков, пересекающихся под углом 60°. Квадрат – фигура, состоящая из четырех равных между собой отрезков, пересекающихся под углом 90°. Это примеры правильных многоугольников – фигур, состоящих из равных между собой прямых отрезков, пересекающихся под равными углами. На рисунке изображен правильный семиугольник (гептагон[170]).
Некоторые дорожные знаки (например, знак «Движение без остановки запрещено») имеют форму правильного восьмиугольника (октагона).
Задумавшись на секунду, мы поймем, что правильных многоугольников бесконечно много: существует правильный n-угольник при любом натуральном n ≥ 3.
Мы вычерчиваем многоугольники на плоскости. А как насчет родственных им фигур в трехмерном пространстве?
Многогранники«Перешедшие на следующий уровень» многоугольники в трехмерном пространстве называют многогранниками (или полиэдрами). Многогранник – это пространственная фигура с плоскими гранями, каждая из которых представляет собой многоугольник. Среди наиболее известных многогранников – треугольная призма и пирамида с квадратным основанием. Треугольная призма состоит из трех прямоугольников и двух треугольников. Пирамида состоит из четырех треугольников и одного квадрата.
Как расширить идею правильного многоугольника на пространственные фигуры? Правильный многогранник имеет конгруэнтные[171] грани и углы.
Расширение до трех измерений требует, чтобы все части многогранника были конгруэнтны между собой. Таким образом:
– все ребра многогранника равны между собой;
– все углы, под которыми пересекаются два ребра, равны между собой;
– в каждой вершине пересекается одинаковое число ребер;
– все углы между соседними гранями равны между собой.
Из первых двух условий следует, что все грани правильного многогранника конгруэнтны и представляют собой правильные многоугольники.
Наверное, самый известный правильный многогранник – это куб, состоящий из шести граней, каждая из которых представляет собой правильный четырехугольник (квадрат). На рисунке изображены еще четыре правильных многогранника.
• Тетраэдр состоит из 4 равных между собой треугольников.
• Октаэдр состоит из 8 равных между собой треугольников (вообразите, что вы склеили две пирамиды с квадратным основанием).
• Додекаэдр образован 12 правильными пятиугольниками.
• Икосаэдр состоит из 20 равносторонних треугольников.
На рисунке изображены развертки правильных многогранников. Вы можете перерисовать эти фигуры, вырезать их и склеить бумажные модели. В продаже бывают наборы для изготовления правильных многогранников.
Пять правильных многогранников известны под названием платоновы тела[172]. Существуют ли другие правильные многогранники?
На рисунке вы видите звездчатый икосаэдр, чьи грани представляют собой равносторонние треугольники, однако эта пространственная фигура не является правильным многогранником, потому что не все грани пересекаются под равными углами, и не во всех вершинах пересекается одинаковое число ребер (при острых углах пересекаются три ребра, а в звездчатом центре – десять ребер).
Найти другие правильные многогранники нам поможет чудесная формула, названная в честь Леонарда Эйлера (мы впервые познакомились с ним в главе 7).
Формула Эйлера для многогранниковУ многоугольника столько же углов, сколько сторон. Ситуация с многогранниками сложнее: у них есть вершины, ребра и грани. В таблице указано, сколько каких элементов есть у многогранников, с которыми мы познакомились в этой главе:
Изучите таблицу повнимательней. Видите ли вы взаимосвязь между количеством вершин, ребер и граней? Она есть, и достаточно простая. Ответ вы найдете ниже, но гораздо интереснее вывести формулу самостоятельно. Обозначьте количество вершин, ребер и граней буквами V, E и F соответственно[173].
А пока вы размышляете над выводом формулы соотношения между V, E и F, я сверю данные в таблице. Для простой пространственной фигуры (например, для пирамиды) посчитать количество составляющих ее частей несложно: пять вершин (четыре у основания и одна сверху), восемь ребер (опять-таки четыре у основания и еще четыре, ведущие наверх) и пять граней (четыре треугольника, один квадрат). Тетраэдр и призма тоже не вызывают затруднений. О кубе и говорить нечего – все мы с ним знакомы. У куба восемь вершин (четыре снизу, четыре сверху), 12 ребер (четыре внизу, четыре вверху и четыре вертикальных), 6 граней (мы все играли в кости).
Другие многогранники сложнее себе представить. Ради простоты можно расплющить их следующим образом: представьте, что многогранник пустой