Легко представить себе, что после того столкновения с небесным телом, в результате которого сформировалась Луна, Земля стала в значительной степени расплавленной. Однако наша планета могла быть расплавлена и до этого столкновения, в общем‑то большой разницы здесь нет, если только это не повлияло на сам процесс столкновения. Хотя последующие геологические процессы стерли все следы того расплавленного состояния Земли, есть доказательства того, что оно существовало на Луне, где можно найти остатки раннего океана магмы – океана расплавленных горных пород. Вопрос, был на Земле этот океан магмы или же нет, все еще открыт, но, учитывая драматический характер планетных столкновений и аккреции, магматическое начальное состояние – гипотеза, которая хорошо объясняет то, что произошло потом.
Многие крупные планетезимали, столкнувшиеся с аккрецирующей Землей, могли иметь собственные железные ядра. Возможно, на этих небесных телах было значительное количество свободного железа. Его тяжелые бесформенные сгустки провалились к центру Земли на ранней стадии ее формирования и образовали протоядро до столкновения, в результате которого образовалась Луна и которое способствовало накоплению большего количества железа в ядре при плавлении Земли (снова).
Получившийся в результате океан магмы мог составлять значительную часть всего объема Земли. Остывая и затвердевая, он продолжал разделять компоненты Земли, так как различные элементы смеси расплавленных горных пород, называемой магмой, затвердевают при разной температуре и по мере кристаллизации тонут и разделяются. Любой избыток железа, еще растворенного в магме, остался бы в расплавленном состоянии до конца (как и при формировании планетезималей), и в итоге, когда богатая железом магма стала бы достаточно тяжелой, спустился бы к ядру. Бóльшая часть затвердевшего слоя горных пород составила бы мантию, а более легкие компоненты в конечном итоге всплыли бы к поверхности, образовав тонкую земную кору. Океан магмы также мог разделиться пополам по мере затвердевания: более легкие расплавы остались бы в верхней части, более тяжелые, сжатые до высокой плотности в нижней части океана магмы, опустились бы к основанию мантии. Следы этого «нижнего океана магмы» сохранились до наших дней – сейсмологи до сих пор обнаруживают вкрапления магмы в нижней части мантии.
Если океан магмы действительно существовал, то затвердел он очень быстро (по крайней мере та часть, которая не ушла в нижнюю часть мантии). Это могло занять от нескольких десятков миллионов до нескольких сотен миллионов лет, по геологическим меркам – весьма быстро. Фактически с этого времени начинается геологическая история Земли, которая запечатлена в горных породах. Считается, что образование Солнечной системы произошло примерно 4,6 млрд лет назад, но эта информация получена по метеоритам, а не по горным породам Земли. Древнейшим породам на Земле всего около 4 млрд лет, вероятно, они сохранились с тех времен, когда океан магмы окончательно затвердел. (В некоторых местах Земли были найдены крошечные кристаллы циркона, которые на несколько сотен миллионов лет старше, но породы, в которых они содержатся, не такие старые.) Таких древних пород сохранилось очень мало, потому что бóльшая часть коры, которая поднялась к поверхности океана магмы, была размыта и «переварена» последующими геологическими процессами. Также возможно, что она была уничтожена астероидами, частые столкновения с которыми продолжались несколько сотен миллионов лет и прекратились около 4 млрд лет назад. Таким образом, 4 млрд лет назад фактически началась геологическая эра, называемая археем, в которой уже существовали современные горные породы и которая занимает огромный отрезок геологического времени (около 2 млрд лет из общих 4,6 млрд). Эра до архея, когда, вероятно, существовал океан магмы, называется катархей или гадей, в честь Гадеса (Аида), древнегреческого бога подземного царства.
После того как океан магмы окончательно остыл, Земля продолжала развиваться и остывать, хотя и более медленно, выделяя тепло в холодный вакуум космоса. Это развитие в значительной степени определялось и определяется мантией Земли. Мантия настолько огромна и малоактивна, что управляет не только процессом остывания планеты, но и ее геологическим развитием. Мантия осталась горячей со своих первых дней (после того, как затвердел океан магмы), но сейчас она представляет собой почти полностью твердое тело, за исключением нескольких небольших, но важных мест. Мантия все еще нагревается энергией, выделяющейся при распаде таких радиоактивных элементов, как уран, торий, а на ранней стадии – неустойчивого изотопа калия. Он быстро распадается, выделяя много тепла (калий распадается на аргон, который составляет важную часть элементного состава атмосферы в наши дни). Как вы помните, более тяжелые радиоактивные элементы уран и торий возникли в результате нейтронного захвата в процессе эволюции красных сверхгигантов. Внутри звезд этот процесс проходил медленно, но, как только произошла вспышка сверхновой, он стал быстрее. В любом случае мантия остается горячей и остывает, отдавая тепло в космос. Более половины ее тепла осталось со времен образования Земли и океана магмы, остальное получено от нагрева радиоактивными элементами.
Однако мантия не остывает как большое горячее статическое каменное тело – она очень медленно движется. Породы мантии, становясь рядом с более холодной поверхностью прохладными и тяжелыми, опускаются, а породы в нижней части мантии вблизи горячего ядра теплее и легче, поэтому они поднимаются. Этот процесс, при котором горячее вещество всплывает вверх, а холодное опускается вниз, называется тепловой (естественной) конвекцией, она широко распространена в природе – в земной мантии и океанах, в атмосферах планет и звезд, в чашке кофе. Конвекция управляет ураганами, грозами и океанскими течениями, она причина