появления гранул на Солнце. Чтобы вещество могло двигаться под действием силы тяжести (которая делает горячее вещество легче, а холодное – тяжелее), оно должно обладать текучестью. Хотя мантия является твердой, а не жидкой, в течение очень долгого времени она ведет себя как флюид, подобно тому как перемещаются ледники – медленно, если они не тают, не разваливаются на части и не происходит обламывания льдов.

То, что твердые частицы ведут себя как флюиды, звучит как‑то нелогично, но, как уже говорилось в предисловии, я не пойду по пути наименьшего сопротивления. Вместо того чтобы снисходительно сказать «это слишком сложно», я попытаюсь объяснить, что к чему, простым языком. (Обратите внимание: слово «флюид» часто ошибочно используют как синоним слова «жидкость». Вещества могут быть твердыми, жидкими и газообразными, а также в состоянии плазмы, если их очень сильно разогреть. Но «флюид» не обозначает состояние вещества, это слово говорит о том, какой именно текучестью обладает вещество или как оно деформируется. Сюда также относятся другие способы деформации: упругость, пластичность, хрупкость и т. д. Твердое вещество может действовать как флюид, когда ледники и мантии деформируются, а газ и жидкость могут действовать как упругие вещества, когда через них проходят звуковые волны.)

Представьте банку, которая на четверть заполнена разноцветными шариками‑марблами или, если хотите, шариками из подшипников. Если шарики хорошо уложены на самое дно банки и пребывают в состоянии покоя, они выстраиваются в идеальные ряды, плотно прилегая друг к другу. Как правило, каждый шарик лежит в углублении, образованном другими шариками под ним. Это похоже на поведение атомов твердого вещества – атомы также имеют строгую структуру и обычно не двигаются (если оставить их в состоянии покоя). Если начать трясти банку так, чтобы шарики смещались и сталкивались друг с другом, это будет похоже на то, как ведет себя жидкость: атомы движутся, но все еще находятся в контакте друг с другом. Если же мы начнем трясти банку изо всей силы, шарики начнут хаотично подпрыгивать внутри нее и заполнят весь объем: по сути, они ведут себя как газ, атомы которого движутся хаотично, заполняют объем, отражаясь от стенок контейнера и редко встречаясь друг с другом. Но вернемся к находящейся в покое банке с «твердым» слоем шаров. Немного наклоним ее – плотно лежащие шары не сдвинутся с места. Если мы продолжим наклонять банку, то некоторые шары покинут занятые ими углубления и займут другие ниши внизу. Мы увидим медленное движение шариков из одного углубления в другое – так, чтобы слой постепенно перетекал и приспосабливался к наклону, но бóльшую часть времени (т. е. в долгих интервалах между тем, как каждый шарик перемещается на новое место) по‑прежнему оставался «твердым». В настоящих твердых телах двигающиеся атомы покидают свое положение между другими атомами и занимают новое устойчивое положение в атомарной структуре. Горные породы в мантии двигаются в условиях механического напряжения (растяжения и сдавливания) и под действием силы тяжести, перемещающей легкие и тяжелые породы. Но мантия движется невероятно медленно. Прибегнем к такому сравнению: она движется примерно с той же скоростью, с какой растут ногти у вас на руках: вам не слишком‑то хочется рассматривать, как они растут (разве что от скуки), но вы знаете, что они растут.

Пусть это так же скучно, как наблюдать за ростом ногтей, но тем не менее это важно, потому что медленная конвекция твердой земной мантии управляет всеми процессами, происходящими в Земле. Как мы увидим далее, конвекция является причиной движения тектонических плит и, следовательно, причиной землетрясений, вулканов, горообразования и т. д. Конвекция мантии также устанавливает медленный темп остывания нашей планеты, в процессе которого она отдает свое тепло в космос, ведь Земля не может терять тепло быстрее, чем мантия. Конвекция является одним из способов, с помощью которого флюиды избавляются от тепла, поглощая холодное вещество около поверхности и смешивая его с горячим веществом внизу (представьте себе кубики льда, брошенные в горячий чай). Также в результате конвекции горячее вещество из нижних слоев поднимается к более холодной поверхности, где быстрее теряет тепло. Мантия охлаждается именно таким образом: быстрее, чем если бы она представляла собой большой статичный монолит из горных пород, но постепенно из‑за того, что мантия движется очень медленно. Это означает, что мантия перемещает литосферные плиты на протяжении миллиардов лет, и это движение плит необходимо нам, потому что оно поддерживает стабильный климат на Земле и способствует сохранению жизни – но об этом поговорим чуть позже.

Медленное охлаждение мантии не позволяет ядру Земли остывать слишком быстро, и оно по‑прежнему большей частью находится в расплавленном состоянии. Мы уже говорили, что сейсмологи смогли по сейсмическим волнам определить, что основная часть ядра является жидкой, хотя внутри его содержится твердое внутреннее ядро, которое медленно остывает и твердеет. Жидкое внешнее ядро, расположенное вокруг затвердевающего внутреннего, является текучим, а поскольку оно состоит из железа, то может проводить электрический ток. Текучесть внешнего ядра обеспечивается конвекцией, вызванной охлаждением ядра, и вращением Земли. Движение этого электрического проводника в слабом магнитном поле, создаваемом магнитным полем Солнца, создает электрические токи по принципу работы электрогенератора (вращение проволочной катушки в магнитном поле вызывает электрический ток). Затем эти электрические токи генерируют собственное магнитное поле. Все магнитные поля без исключения вызваны движением электрических зарядов либо свободными электронами, текущими в электрических проводниках, например в проводах, или связанными электронами, вращающимися вокруг атомного ядра (благодаря чему магниты прикрепляются к дверце холодильника). Электрические токи и связанное с ними магнитное поле, генерируемое в ядре, стало достаточно сильным и организованным, чтобы поддерживать общее магнитное поле Земли.

Земля обладает чрезвычайно сильным магнитным полем для такой маленькой планеты, гораздо более сильным, чем у других планет земной группы. Поле Земли хорошо структурировано, преимущественно как стержневой магнит с «северным» и «южным» полюсами. У Венеры, мнимого близнеца нашей планеты, своего магнитного поля нет. В коре Луны и Марса встречаются участки намагниченных пород, возможно, у них когда‑то были свои собственные магнитные поля, но сейчас их нет. Меркурий обладает крупным железным ядром, являющимся источником дипольного магнитного поля, похожего на земное, но значительно более слабого. И только газовые гиганты и планеты‑океаны во внешней области Солнечной системы имеют сильные магнитные поля, самым мощным полем обладает – вот сюрприз – Юпитер.

Магнитное поле Земли проходит через верхние слои атмосферы и даже достигает Луны (благодаря солнечному ветру, «обтекающему» поле Земли таким образом, что оно становится похоже на кита с длинным хвостом). Поле защищает нас и нашу атмосферу – о чем пойдет речь

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату