Магнитное поле Земли создается в жидком ядре – эта идея исходила из того, что геомагнитное поле зарождается внутри Земли (это установил в начале XIX в. немецкий математик Карл Фридрих Гаусс), но перемещается гораздо быстрее, чем геологические процессы передвигают вещество в мантии (и чем растут ваши ногти). Геомагнитное поле схоже с полем обычного магнита (минерала магнетита, свойства которого обусловлены его кристаллическим строением), однако его источник – не постоянный магнит, ведь земная мантия и ядро слишком горячи, чтобы превратиться в намагниченные минералы и железо. Магнитное поле Земли от десятилетия к десятилетию и от века к веку смещается (это заметил в конце XVII в. Эдмунд Галлей, чьим именем названа знаменитая комета), а каждые несколько сотен тысяч лет резко меняет направление: происходит инверсия северного магнитного полюса на южный. Такой процесс в недрах Земли должно создавать что‑то большое, подвижное и электропроводящее (о чем догадывался еще Галлей), и единственным претендентом на эту роль является жидкое внешнее железное ядро. Однако лишь в последние 20 лет с помощью компьютеров удалось смоделировать механизм генерации магнитного поля Земли (геодинамо).
Многие детали этой теории все еще вызывают споры. Например, до конца не известно, чтó является источником энергии геодинамо. Тепловая конвекция? (Действительно, на границе ядра и мантии жидкое железо, остывая, становится тяжелее и опускается.) Но железо отлично проводит тепло, конвективные потоки легко смещаются, и тепловая конвекция кажется слишком слабым источником энергии.
По другой теории, конвекция обусловлена различным химическим составом ядра Земли. Считается, что жидкое внешнее ядро состоит из смеси железа, никеля и небольшого количества легких элементов, таких как сера. Когда этот расплав застывает на границе внешнего и внутреннего ядер, легкие элементы растворяются в нем, расплав становится чрезвычайно плавучим и быстро поднимается со дна к верхней части внешнего ядра, создавая конвективное движение и питая геодинамо. Отсутствие магнитного поля у Венеры может быть связано с более высокими температурами на этой планете, горячие мантия и ядро которой не позволяют остыть внутреннему ядру. Это укрепляет предположение, что механизм геодинамо вызывается химической конвекцией, связанной с кристаллизацией внутреннего ядра. В принципе есть и другие потенциальные источники энергии для геодинамо, вопрос, какой из них является главным, нам еще предстоит прояснить.
Но вернемся к поверхности Земли и к вопросу о происхождении земной коры и континентов. Кора планеты обычно формируется из самых легких расплавов, которые остывают, поднявшись на поверхность. Когда на Земле существовал океан магмы, самые легкие вещества именно так образовали тонкую кору. Но, вероятно, от нее мало что сохранилось до наших дней. Расплав, поступающий из мантии (или океана магмы) на поверхность планеты, представляет собой жидкую текучую лаву – базальт. Лучший пример – лава гавайских вулканов, образующих базальт и в наши дни. Гавайские острова сформировались (а некоторые все еще формируются) над необычно горячей областью земной мантии, называемой «горячей точкой». Эту точку, по всей видимости, создает горячий конвективный апвеллинг, он же мантийный плюм, который поднимается по всей площади мантии с нижней ее части, расположенной вблизи горячего железного ядра. В глубине мантии плюм остается твердым, а по мере приближения к поверхности частично плавится (на 10–20 % или больше), поскольку плавление легче происходит при низком давлении. Плавящееся вещество выходит на поверхность планеты уже в виде базальта. Гавайский плюм выбрасывает его так много, что образует огромные вулканические острова (по сути это щитовые вулканы – широкие и с пологими склонами). На других планетах земной группы также есть базальтовая кора, возможно созданная таким же образом, – к примеру, гора Олимп на Марсе выглядит, как гигантский щитовой вулкан.
Вместе с тем огромное количество базальтовой коры Земли образуется без участия наземных вулканов – вдоль длинных поясов подводных горных хребтов, называемых срединно‑океаническими. Они опоясывают Землю, как швы на бейсбольном мяче. Правда, швы это никудышные, именно в этих местах дно разрывается, и из мантии поднимаются потоки базальтовой лавы, застывая и формируя новые участки океанической коры. Этот процесс называется растеканием (спредингом) морского дна, и его открытие привело к появлению революционной теории тектоники литосферных плит.
Растекание морского дна предсказал геофизик Гарри Хесс в начале 1960‑х гг., а вскоре Фредерик Вайн, Драммонд Мэтьюз и Лоуренс Морли открыли это явление. Базальты срединно‑океанических хребтов содержат магнитные минералы. Растекаясь и застывая, они «записывают» направление магнитного поля Земли – как металлическая стружка на листе бумаги показывает линии магнитного поля подложенного магнита. Как мы уже говорили, геомагнитное поле нашей планеты периодически меняет свое направление, и по мере растекания дна эти инверсии фиксируются в базальте как на телеграфной ленте или магнитофонной пленке (не самые популярные в наши дни носители, но ни современные флеш‑накопители, ни компакт‑диски явно не подходят для этой аналогии). Таким образом, параллельно срединно‑океаническим хребтам образуются полосы магнитных аномалий, показывающие, когда геомагнитное поле было направлено вверх или вниз, а это означает, что морское дно двигалось наружу во время «записи» этих событий (следовательно, можно выяснить, как быстро оно перемещалось).
Открытие растекания морского дна стало, по мнению большинства геологов, началом революционных открытий в геологии. Идея о том, что поверхность Земли подвижна, обсуждалась с 1920–1930‑х гг. Вначале возникла теория дрейфа материков. Предложенная немецким метеорологом Альфредом Вегенером, эта гипотеза утверждала, что континенты перемещаются подобно айсбергам, пробиваясь сквозь океаническую кору (впоследствии было доказано, что это невозможно). Сформулированная позже теория тектоники плит утверждает, что вся поверхность планеты разделена на гигантские фрагменты‑пазлы, которые находятся в постоянном движении относительно друг друга, а встроенные в эти пазлы континенты лениво движутся вместе с ними. Гигантские куски пазлов называются литосферными плитами, из них выделяют восемь крупных, например Тихоокеанскую плиту (самую большую), и небольшое количество более мелких.
Литосферные плиты, как фрагменты пазла, раскалывают верхний каменистый слой Земли, при этом плиты движутся относительно друг друга. На рисунке изображены основные литосферные плиты, стрелки указывают направления их движения. Взаимные движения плит определяют типы их границ: дивергентные (см. расширяющийся Срединно‑Атлант