Многие ученые внесли свой вклад в уточнение теории тектоники плит, математическая модель, описывающая их движение, была предложена Дэном Маккензи и Джейсоном Морганом. Однако до сих пор остается загадкой, почему на Земле, в отличие от других планеты земной группы, вообще происходит тектоника плит.
Тектонические плиты – это прочные твердые блоки холодной породы толщиной до 100 км (при этом у них слабые края). Плиты непрерывно скользят (в геологическом масштабе времени; в масштабе времени человека скольжение может принимать форму землетрясений), благодаря чему происходит их движение. Как уже было сказано, там, где происходит растекание морского дна, эти фрагменты пазла раздвигаются. Но если плиты расходятся друг от друга в одной зоне, значит, в другой их противоположные края будут сближаться. Регионы, где это происходит, называются зонами субдукции. В частности, плита, сдвигающаяся от другого блока земной коры, обычно противоположным краем сталкивается с третьей плитой и погружается под нее. Процесс погружения одной плиты под другую называется субдукцией. Эти зоны хорошо прослеживаются в самых глубоких желобах океана, таких как Марианская впадина, где океанское дно проваливается вниз под весом погружающихся плит. Все это движение не случайно: насколько об этом можно судить с поверхности, оно является проявлением конвекции мантии Земли. Литосферная плита опускается, потому что остывает, удаляясь от горячего места растекания морского дна, где была создана. В конце концов она становится холодной и достаточно тяжелой, чтобы погрузиться под медленно двигающуюся мантию, при этом охлаждая ее. Таким образом, субдукция (погружение одних участков земной коры под другие) эквивалентна холодному и тяжелому конвективному даунвеллингу (опусканию слоев вещества).
Геофизики (и я в их числе) полагают, что субдукция – это не только проявление конвекции земной мантии, но и главная движущая сила тектоники плит. Холодная, погружающаяся часть плиты (слэб) остужает мантию благодаря конвекции и в то же время тянет заднюю часть плиты на поверхность. Это подтверждается тем фактом, что плиты с обширными зонами субдукции на краях самые быстрые. Есть целый ряд плит, которые практически не имеют зон субдукции и движутся гораздо медленнее: по всей видимости, их просто толкают погружающиеся плиты. Самая крупная литосферная плита – Тихоокеанская – обладает самым большим количеством зон субдукции и быстро перемещается, примерно на 10 см в год.
Зоны субдукции также являются областями, где происходят наиболее сильные и разрушительные землетрясения. Землетрясения случаются и в районе срединно‑океанических хребтов, но они незначительны. Подводные хребты также производят большую часть лавы, но она жидкая и легко течет. Там, где плиты не расходятся в разные стороны и не сближаются, а «скользят» одна рядом с другой (как, например, в разломе Сан Андреас и Анатолийской зоне разломов), землетрясения происходят значительные, но не разрушительно сильные. Также в этих зонах практически отсутствует вулканизм, так как движение там не связано с поднятием горячей породы мантии к поверхности. Однако погружающаяся плита задевает край верхней плиты и тянет ее вниз, сгибая в форме лука. Когда сила трения между этими плитами уже не может выдержать напряжение, верхняя плита распрямляется обратно вверх, «выстреливает», порождая сильнейшие землетрясения и зачастую цунами.
А еще в зонах субдукции активно извергаются вулканы, несмотря на то что эти зоны находятся там, где происходит погружение холодных плит. Что же заставляет расплавленные горные породы подниматься к поверхности, создавая вулканы? Образование вулканов в этих областях – ключ к пониманию того, откуда вообще берется бóльшая часть континентальной коры. В самом деле, на других известных нам планетах нет тектоники плит и континентальной коры.
Процесс плавления в зонах субдукции сложнее, чем в срединно‑океанических хребтах или таких горячих точках, как Гавайи. Ни в одном из этих случаев плавление не вызвано тем, что порода становится горячее (что мы обычно представляем себе, когда думаем о плавлении льда или воска). На срединно‑океанических хребтах и в горячих точках породы мантии Земли плавятся, потому что поднимаются к зонам более низкого давления, которое облегчает процесс плавления. В зонах субдукции плавление облегчает вода. Литосферные плиты, входящие в зону субдукции, как правило, находились под водой от десятков до нескольких сотен миллионов лет. Извергающаяся в районе срединно‑океанических хребтов лава вступает в реакцию с водой и создает гидратированные минералы (породы, содержащие воду или водород), такие как амфиболы и серпентин. Осадочные отложения, смываемые с континентов (которые, как принято считать, тогда еще не образовались) и опускающиеся на дно океана, также вбирают воду (и углерод, что мы обсудим позже). Когда плита достигает зоны субдукции, значительная часть ее тонкой коры содержит гидратированные минералы и большинство их погружаются в зону субдукции вместе с остальной частью плиты, хотя многие осадочные отложения откалываются и скапливаются на поверхности. Когда эти минералы погрузятся примерно на 100 км в глубь мантии, температура и давление становятся слишком высокими, чтобы они могли остаться гидратированными, поэтому минералы испускают воду – в сущности, она просто выпаривается и просачивается из верхней части погружающейся плиты или слэба в более горячую мантийную породу, которая становится гидратированной. Гидратированные мантийные горные породы плавятся легче, чем сухие, так как водород ослабляет минеральные связи, и поэтому даже при «скромных» температурах рядом с холодным погружающимся слэбом увлажненная мантия становится достаточно горячей, чтобы расплавиться. Это не совсем горячий мантийный расплав, тем не менее он поднимается к поверхности и похож на жидкую базальтовую лаву, хотя и холоднее, чем гавайские лавы. Достигнув поверхностных слоев земной коры, он будет плавить части, которые легко поддаются плавлению, т. е. могут быть расплавлены путем «прохладного мокрого» плавления. Такие легко плавящиеся горные породы, как правило, богаты диоксидом кремния (кремнекислородными молекулами или силикатами). Они плавятся и отделяются от остальной части коры. Наиболее богатой кремнием магмой является гранит – типичный продукт такого «холодного» плавления.
Первое субдукционное плавление на ранней Земле могло создать лишь немного гранита из существовавшей тогда тонкой океанической коры. Даже плавление современной океанической коры не дает большого количества гранита или похожих на него горных пород. Образующиеся при этом островодужные системы вулканов вблизи океанских хребтов, например на Антильских и Алеутских островах, могут иметь много первоначальной базальтовой магмы, перетекшей из земной мантии.