Сопряженный транспорт, при котором две молекулы (или ионы) переносятся белком-переносчиком в одну и ту же сторону, называется симпортом. Какая от него может быть польза? Вот, например, представим себе животную клетку, которой нужна глюкоза (то есть в общем-то любую животную клетку). Глюкоза — важнейший промежуточный продукт обмена веществ, ее концентрация в любой клетке заведомо гораздо выше, чем во внеклеточной среде. Тем не менее переправить ее из этой среды внутрь клетки как-то нужно. Конечно, эту задачу можно было бы решить, просто потратив АТФ. Но есть и обходной путь, причем очень удобный. Мы уже говорили, что в любой живой клетке, в том числе и животной, обычно очень мало натрия. Снаружи от клетки — в крови, в тканевой жидкости, где угодно — его намного больше. Сам по себе натрий клетке не нужен. Но если все-таки дать ему в нее войти, это будет диффузия, приводящая к снижению свободной энергии, попросту говоря, энергетически выгодный процесс. Так вот, существует белок-переносчик, который одновременно пропускает внутрь клетки ионы натрия и молекулы глюкозы (рис. 11.4, В). В результате перенос глюкозы энергетически «оплачивается» ценой переноса натрия — без всякой траты АТФ! Именно с помощью такого глюкозного транспортера происходит, например, всасывание глюкозы клетками нашего кишечника.
Сопряженный транспорт, при котором молекулы или ионы переносятся одним и тем же белком-переносчиком в разные стороны, называется антипортом. Тут возможно точно такое же энергетическое сопряжение, как и в симпорте: одна молекула переносится по градиенту, вторая — против градиента, и перенос первой «оплачивает» перенос второй. Например, допустим, что из животной клетки нужно вывести накопившиеся там лишние ионы H+, при том что в жидкости снаружи от клетки их еще больше. Белок, способный решить эту задачу, называется натрий-протонным антипортером (рис. 11.4, Г). Он впустит в клетку некоторое количество ионов натрия (которых снаружи всегда больше, поэтому их вход энергетически выгоден) и в обмен на них выведет из клетки протоны. Этот механизм действует, например, в наших почках: именно с помощью натрий-протонного антипортера ненужные протоны выбрасываются в мочу, чтобы быть окончательно удаленными из организма.
Очень широко используют натрий-протонный антипорт бактерии. Обменивая протоны на ионы натрия, они фактически конвертируют натриевый мембранный потенциал в протонный (или, с тем же успехом, наоборот):
∆μNa ⇌ ∆μH.
Это позволяет одной и той же бактерии использовать в качестве запасов энергии и протонный, и натриевый потенциалы, переходя от одного к другому в зависимости от условий внешней среды. Раз уж такая возможность есть, почему бы ею не пользоваться? Вот бактерии и пользуются, для них это полезный инструмент адаптации.
Как видим, транспорт через клеточную мембрану занимает в энергетическом обмене важнейшее место. Настолько важное, что впору задать вопрос: не началась ли жизнь как таковая именно с мембранной энергетики? И в самом деле, такую мысль иногда высказывают. Мы еще вернемся к ней.
Окислительно-восстановительные реакции
В зависимости от того, откуда живые организмы берут энергию, их можно разделить всего на две главные категории: фототрофы, для которых источником энергии является свет, и хемотрофы, для которых источником энергии являются окислительно-восстановительные химические реакции. В отношении света нам вполне достаточно понимать, что это разновидность электромагнитных волн. А вот что такое окислительно-восстановительные реакции — придется пояснить, благо все необходимые для этого понятия мы из предыдущих глав уже знаем.
Итак, представим себе любое вещество, состоящее из молекул. Атомы в типичной молекуле соединены между собой ковалентными связями, каждая из которых образована парой электронов. Число ковалентных связей, которые может образовать данный атом, называется его валентностью (см. главу 1). Валентность водорода равна 1, кислорода 2, азота 3, углерода 4 и фосфора 5. В соединениях с ионными связями, где электроны целиком переходят от одного атома к другому, валентность каждого иона приравнивается к величине его заряда.
Ковалентные связи делятся на полярные и неполярные (см. главу 2). В неполярной ковалентной связи электроны, условно говоря, расположены точно посредине, а в полярной они смещены в сторону одного из атомов. Сила, с которой этот атом оттягивает на себя электроны, называется его электроотрицательностью. На самом-то деле правильнее говорить, что смещаются не целые электроны, а максимум плотности электронного облака. Но так или иначе из-за этого частичного смещения электронов атомы, участвующие в полярной ковалентной связи, приобретают маленькие (намного меньше единицы) электрические заряды. На одном атоме этот заряд положительный, на другом отрицательный. Например, на кислороде он обычно отрицательный, потому что электроотрицательность кислорода очень высока. Это означает, что он почти во всех своих соединениях оттягивает электроны на себя.
Еще древние философы знали, что человеческому уму гораздо удобнее работать с дискретными единицами, чем с непрерывными совокупностями. Вот поэтому химики и придумали чисто формальное, зато достаточно емкое понятие под названием «степень окисления». Степень окисления — это условный заряд данного атома, вычисленный исходя из предположения, что все его связи являются ионными (независимо от того, так ли это на самом деле). Неполярные ковалентные связи, в которых партнеры строго равноправны, в рамках этого определения игнорируются. А вот любую полярную ковалентную связь мы мысленно заменяем на ионную и воображаем, что каждый участвующий в ней электрон целиком захвачен каким-нибудь из атомов. Каким именно — зависит от электроотрицательности. Но в любом случае степень окисления может быть только целым числом. Например, молекула воды (H2O) состоит из одного атома кислорода (O) и двух атомов водорода (H), каждый из которых соединен с атомом кислорода одинарной ковалентной связью. Электроотрицательность кислорода больше, чем у водорода, поэтому электроны, образующие ковалентные связи, он оттягивает на себя. Это означает, что в молекуле воды атом кислорода имеет степень окисления –2, а каждый из атомов водорода +1. Молекула углекислого газа (CO2) состоит из атома углерода и двух атомов кислорода, соединенных с ним двойными ковалентными связями. В этой молекуле атом углерода имеет степень окисления +4, а каждый из атомов кислорода –2. Сумма степеней окисления всех атомов в любой частице равна ее полному электрическому заряду. Если эта частица — незаряженная молекула, то сумма степеней окисления всех атомов равна нулю. На примере углекислого газа и воды мы видим, что это действительно так.
Теперь посмотрим на вещи чуть шире. Некоторые химические реакции приводят к тому, что распределение электронной плотности у атомов существенно меняется. Попросту говоря, это означает, что около каких-то атомных ядер электронов становится меньше, а около каких-то больше. Понижение электронной плотности у данного атома называется окислением, а ее повышение — восстановлением. Говоря формально, окисление — это потеря электронов, а восстановление — приобретение