запрета не в состоянии остановить коллапс звезды с массой больше предела своего имени, а задачу о судьбе такой звезды в общей теории относительности первым решил молодой американский ученый Роберт Оппенгеймер в 1939 году. Однако его выводы выходили далеко за рамки возможностей наблюдательной науки: телескопы тех лет не могли подтвердить или опровергнуть его теорию. Потом началась Вторая мировая война, и Оппенгеймера привлекли к работе над атомным проектом. После войны о проблеме гравитационного коллапса забыли, потому что большинство ученых увлеклись явлениями, происходящими на масштабах атома или атомного ядра. Но в 60-х годах XX века интерес к проблемам астрономии и космологии на больших масштабах возродился под влиянием резкого увеличения объема и диапазона астрономических наблюдений, что было вызвано внедрением передовых технических достижений. На работу Оппенгеймера снова обратили внимание, и ряд ученых смогли развить его заключения.

Согласно Оппенгеймеру, дело обстоит следующим образом. Под действием гравитационного поля звезды траектории лучей света в пространстве-времени искривляются – в отсутствие звезды траектории были бы иными. Световые конусы, указывающие траектории, по которым следуют в пространстве-времени вспышки света, излученного из вершин этих конусов, слегка искривляются внутрь около поверхности звезды. Такой эффект наблюдается во время солнечного затмения, когда искривляются лучи света далеких звезд. По мере сжатия звезды напряженность гравитационного поля на ее поверхности возрастает, и световые конусы все сильнее искривляются к звезде. Из-за этого излучению звезды становится все труднее покинуть ее, и для удаленного наблюдателя ее свечение выглядит все более тусклым и красным. Наконец, когда звезда сожмется до определенного критического радиуса, гравитационное поле на ее поверхности окажется чрезвычайно сильным и выгнет траектории лучей света так, что те больше не смогут покинуть звезду (рис. 6.1). Согласно теории относительности, ничто не может двигаться быстрее скорости света. И раз свет не может покинуть звезду, это также невозможно и для любого другого объекта – он неминуемо будет втянут обратно гравитационным полем. Таким образом в результате этих событий образуется область пространства-времени, из которой ничто не может выйти – и достичь удаленного наблюдателя. Эта область называется черной дырой. Внешняя граница черной дыры называется горизонтом событий, и она совпадает с траекториями лучей света, которые только что тщетно пытались покинуть эту область.

Чтобы понять, что увидит человек, наблюдающий коллапс звезды и образование черной дыры, надо учесть, что в теории относительности нет абсолютного времени: для каждого наблюдателя время течет по-своему. Наблюдатель на поверхности звезды воспринимает время не так, как оный на большом удалении от нее – из-за большей напряженности гравитационного поля на границе звезды. Представим себе отважного астронавта, балансирующего на поверхности сжимающейся звезды. Он решил остаться там на время коллапса и ежесекундно (по своим часам) посылает сигналы на обращающийся вокруг звезды космический корабль. В какой-то момент по часам астронавта – например, ровно в 11:00 – звезда, сжимаясь, уйдет под критический радиус, на котором гравитационное поле становится настолько сильным, что ничто уже не может покинуть поверхность светила. Стало быть, сигналы астронавта не смогут достичь корабля. По мере приближения к 11:00 спутники астронавта, наблюдающие за ним с борта орбитального корабля, заметят, что интервалы между последовательными сигналами коллеги становятся все длиннее. Эффект этот будет довольно незначителен до 10 часов 59 минут 59 секунд. Между приемом сигнала, отправленного астронавтом в 10 часов 59 минут 58 секунд, и сигналом в 10 часов 59 минут 59 секунд пройдет лишь немногим более секунды, а вот сигнала, посланного в 11:00 по часам астронавта, придется ждать вечно. Световые волны, испущенные с поверхности звезды между 10 часами 59 минутами 59 секундами и 11 часами ровно по часам астронавта, окажутся растянутыми на бесконечный промежуток времени с точки зрения экипажа орбитального корабля. Интервал между принимаемыми волнами на космическом корабле будет с каждым разом все длиннее, и поэтому свет звезды будет тускнеть и смещаться в красную область спектра. В какой-то момент звезда станет настолько неприметной, что ее нельзя будет разглядеть с борта космического корабля, – на ее месте останется лишь зияющая в пространстве черная дыра. Правда, черная дыра продолжит воздействовать на космический корабль все с той же силой тяготения, заставляя его двигаться по околозвездной орбите. Впрочем, это все же не совсем реалистичный сценарий – и все из-за следующей проблемы. Сила тяжести ослабевает по мере удаления от звезды, и поэтому сила притяжения, действующая на ноги бравого астронавта, всегда будет больше силы, действующей на его голову. Под действием разности этих сил тело астронавта вытянется, как спагетти, или вообще окажется разорвано на части еще до того, как звезда достигнет критического радиуса, когда возникает горизонт событий! Правда, считается, что и куда более крупные объекты во Вселенной, такие как центральные области галактик, тоже могут испытывать гравитационный коллапс с образованием черных дыр[19]. Астронавт, оказавшийся на поверхности такого объекта, поначалу, до момента образования черной дыры, будет сохранять целостность. Он, в сущности, ничего особенного не почувствует, когда звезда сожмется до критического радиуса, и вполне может пройти точку невозврата, совершенно этого не заметив. А всего через несколько часов по времени астронавта, по мере продолжения коллапса, разность гравитационных сил, действующих на его голову и ноги, все равно станет достаточно большой, чтобы разорвать его на части.

Результаты исследования, которое мы с Роджером Пенроузом проводили с 1965 по 1970 год, показали, что согласно общей теории относительности внутри черной дыры должна находиться сингулярность с бесконечной плотностью и бесконечной кривизной пространства-времени[20]. Что-то вроде Большого взрыва в начале времен, но только в этом случае мы имеем дело с концом времени для коллапсирующего тела и астронавта. В этой сингулярности нарушаются законы физики и оказывается утраченной возможность предсказывать будущее. При этом наблюдателей вне черной дыры потеря предсказуемости никак не затронет, потому что никакой свет и никакой сигнал изнутри сингулярности не смогут достичь их. Под впечатлением от этого замечательного факта Роджер Пенроуз выдвинул гипотезу о космической цензуре, которую можно сформулировать так: «Бог не терпит голых сингулярностей». Другими словами, сингулярности, порождаемые гравитационным коллапсом, возникают только в местах, подобным черным дырам, то есть там, где они скрыты от внешнего взора горизонтом событий. Это, строго говоря, так называемая слабая гипотеза космической цензуры, – она защищает наблюдателей от последствий имеющего место в сингулярности нарушения предсказуемости, но ничем не может помочь бедному астронавту, который падает в черную дыру.

Существуют решения уравнений общей теории относительности, позволяющие астронавту увидеть голую сингулярность: он может избежать столкновения с сингулярностью, вместо этого пролететь через кротовую нору и выйти в другой области Вселенной. Это открывает замечательные возможности для путешествий в пространстве и времени, но, к сожалению, похоже, что такие решения крайне нестабильны: малейшее возмущение – например, присутствие астронавта – может так повлиять на расчеты, что астронавт не увидит сингулярности, пока не столкнется с ней, и на этом его существование закончится. Другими словами, сингулярность всегда будет находится в его в будущем и никогда – в прошлом. Сильный вариант гипотезы космической цензуры гласит, что при реалистичном решении все сингулярности находятся либо полностью в будущем (как в случае сингулярностей гравитационного коллапса), либо в прошлом (как в случае Большого взрыва). Я глубоко убежден в справедливости гипотезы космической цензуры и поэтому поспорил с Кипом Торном и Джоном Прескиллом из Калифорнийского технологического

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату