ДОПОЛНЕНИЕ 5. АНИЗОТРОПИЯ МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ

Тщательные измерения, проведенные с помощью аппаратуры, установленной на высотном самолете (для уменьшения излучения атмосферы, попадающего в прибор), позволили обнаружить определенную малую анизотропию микроволнового фона излучения. Антенна, направленная на созвездие Льва, дает температуру излучения на 0,13 процента выше средней. В противоположном направлении температура на 0,13 процента ниже средней. Температура плавно меняется между этими двумя значениями.

Такую зависимость микроволнового фона от направления можно объяснить, принимая, что температура строго одинакова во всех направлениях. Однако такая «одинаковость», или, выражаясь научно, «изотропия», имеет место лишь для некоторого воображаемого наблюдателя. Солнечная система, Земля и аппаратура, находящаяся на самолете, движутся относительно этого наблюдателя со скоростью 390 ± 60 км/с в направлении созвездия Льва. Вследствие этого движения, т. е. за счет эффекта Доплера, излучение, идущее навстречу, кажется нам более горячим — на 0,13 %, или на 0,004 градуса, а излучение, догоняющее нас, представляется нам более холодным на те же 0,004 градуса. Точность измерения такова, что выделить вклад от движения Земли вокруг Солнца (30 км/с) и тем более от движения самолета относительно Земли (0,5 км/с) в настоящее время не удается. Однако уже при увеличении точности в 10 раз движение Земли, меняющееся на протяжении года, можно будет заметить. Зная, как движется Солнечная система в Галактике, можно определить скорость, с которой движется относительно воображаемого наблюдателя (см. выше) центральная область нашей Галактики: эта скорость оказалась приблизительно равной 600 км/с.

На этом примере выясняется, что в каждой точке Вселенной существует наблюдатель, относительно которого микроволновое излучение изотропно. Этого наблюдателя и связаную с ним систему координат можно назвать выделенными. Движение другого наблюдателя, находящегося в той же точке, относительно выделенной системы координат приводит к тому, что этот «другой» наблюдатель обнаружит анизотропию микроволнового излучения. Именно это фактически и произошло с земным наблюдателем (анизотропия равна ±0,13 %).

Наличие в каждой точке выделенной системы координат напоминает взгляды физиков до создания теории относительности, когда предполагалось, что свет — это колебания особого вещества — эфира, заполняющего всю Вселенную. Предполагалось далее, что система координат, связанная с эфиром, является преимущественной, выделенной, и ставились опыты по обнаружению движения Земли относительно эфира. Мы знаем, что эти опыты (Майкельсона и других) дали отрицательный результат — светоносный эфир не существует. Однако эволюция Вселенной приводит к тому, что в наблюдениях космического микроволнового излучения (но только в этих астрономических наблюдениях!) выделенная система появляется, и ее иногда называют «новый эфир». Описанные выше наблюдения позволили определить скорость Земли и Солнечной системы, а также Галактики относительно нового эфира — соответственно 390 и 600 км/с.

Однако в расширяющейся Вселенной новый эфир в одном месте движется относительно нового эфира в другом месте. Именно новый эфир или, другими словами, микроволновое излучение с наибольшей точностью осуществляет движение по закону Хаббла. Движение отдельных небесных тел отличается от хаббловского за счет сил тяготения соседних тел. На излучение силы тяготения действуют гораздо слабее, что и позволяет считать, что излучение и связанная с ним система координат движутся по невозмущенному закону Хаббла.

Я.Б.Зельдович и Р.А. Сюняев поставили вопрос: можно ли определить, как движутся относительно «нового эфира» сверхдальние небесные тела? Если смещение спектральных линий соответствует, например, скорости удаления некоего скопления галактик, равной 100 000 км/с, то какая часть этой скорости есть хаббловская скорость, а какая часть — добавочная случайная скорость, связанная с отклонением движения данного скопления галактик от хаббловского закона? Более того, был поставлен вопрос о том, с какой точностью выполняется закон Хаббла в его векторной форме: действительно ли скорость далекого скопления галактик относительно нас (Земли, Солнечной системы, нашей Галактики) направлена по вектору, соединяющему нас с этим далеким скоплением? Нет ли у далекого скопления поперечной (тангенциальной, касательной) скорости, хотя бы и меньшей, чем его хаббловская скорость удаления?

Смещение спектральных линий не позволяет отличить случайную скорость от хаббловской, поскольку независимое определение расстояния до далеких галактик очень неточно (не лучше ±30 %). Поперечная скорость дает малое смещение спектральных линий, которое к тому же принципиально нельзя отделить от смещения, связанного с продольной скоростью.

Однако авторы показали, что скорость скоплений, которые содержат большое количество ионизованного газа, может быть измерена. Такой газ содержит свободные электроны, рассеивающие микроволновое излучение. Если этот газ движется относительно нового эфира, т. е. относительно микроволнового излучения, то свойства излучения изменяются. Продольное движение вызывает повышение или понижение температуры микроволнового излучения при антенне, направленной на облако газа. Поперечное движение дает небольшую поляризацию рассеянного излучения. Тепловое движение электронов несколько меняет спектр излучения. Этот эффект в настоящее время обнаружен путем радиоастрономических наблюдений гигантских облаков горячего газа, являющихся одновременно источником рентгеновского излучения. Из этих наблюдений можно определить также температуру и концентрацию электронов. Таким образом, в принципе можно определить движение облака и вместе с ним всего скопления или, по крайней мере, сказать, что эта скорость не превышает величины порядка 2000 — 3000 км/с для продольного и 5000 — 10 000 км/с для поперечного движения.

ДОПОЛНЕНИЕ 6. О СОХРАНЕНИИ БАРИОНОВ

Вайнберг упоминает о законе сохранения барионного числа, или, другими словами, о законе сохранения барионов как о несомненном факте.

Действительно, все экспериментальные данные ядерной физики подтверждают этот закон. Специальные поиски распада обыкновенных, не радиоактивных ядер показали, что вероятность распада протона меньше 10-37 с-1, что соответствует времени полураспада больше 3 × 1029 лет.

Однако сам Вайнберг еще в 1964 году отметил, что закон сохранения барионов может быть лишь приближенным в отличие от точного закона сохранения электрического заряда. Дело в том, что электрический заряд взаимодействует с электромагнитным полем, подчиняющимся уравнениям Максвелла, а эти уравнения требуют сохранения заряда. Грубо говоря, сохранение электрического заряда вытекает из существования радиоволн. Однако нет другого аналогичного поля, которое требовало бы сохранения барионного заряда (это то же самое, что и барионное число) и запрещало бы превращение протона, например, в позитрон и нейтральный пион. Сохранение барионного заряда установлено лишь прямыми опытами и с той точностью, которую дает опыт[65].

Поэтому Вайнберг в 1964 году предположил, что барионный заряд не сохраняется. Однако в то время Вайнберг имел в виду теорию стационарной Вселенной Хойла и писал о возможности преимущественного рождения в вакууме барионов по сравнению с антибарионами. Теорию горячей Вселенной он тогда не рассматривал. В 1973–1976 гг. в предлагаемой книге Вайнберг не указывает на возможность несохранения барионов и, как сказано выше, причисляет сохранение барионов к фундаментальным законам природы.

Процессы, медленно идущие при низкой температуре, могут идти быстро при высокой температуре. А.Д. Сахаров в 1967 году первый поставил вопрос о несохранении барионов в горячей модели Вселенной. По современным взглядам, нейтроны, протоны и другие сильновзаимодействующие частицы (адроны) состоят из кварков; при высокой температуре кварки свободны и достаточно быстро распадаются и рождаются, спонтанно и при столкновениях с другими частицами (подробнее о кварках см. главу VII). Между свойствами частиц и античастиц существует определенное различие — на это указывают лабораторные эксперименты. Теория показывает, что это различие не нарушает равенства числа частиц и античастиц в термодинамическом равновесии (о понятии термодинамического равновесия см. главу III). Однако в ходе

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату