расширения равновесие может нарушиться, и возможно закономерное появление всюду одинакового избытка барионов над антибарионами. После охлаждения Вселенная везде будет состоять из барионов («вещества») и фотонов. Антибарионы, «антивещество», практически полностью аннигилируют, оставляя избыток вещества, задолго до того, как начнется нуклеосинтез. Аналогичные идеи развивал В.А.Кузьмин в 1969 году.

Позже, в 1974 году, С. Хоукинг и вслед за ним Я.Б. Зельдович отметили возможность появления избытка вещества при испарении черных дыр.

Новая ситуация возникла уже после выхода в свет предлагаемой книги Вайнберга. Сейчас развивается новая теория элементарных частиц, объединяющая теорию электромагнетизма, теорию слабого взаимодействия (в частности, процессов испускания электронов и нейтрино при распаде нейтрона) и теорию сильного взаимодействия (ядерных сил и кварков). В этой теории естественным образом получается, что протон должен распадаться с временем жизни около 1032 лет. Это предсказание не противоречит существующим опытам.

В настоящее время (конец 1980 года) начинается необычайно трудный, но и важнейший «эксперимент века» — поиски распада протона, предсказанного теорией. Применительно к космологии и, в частности, к теории горячей Вселенной возможно, что теория объяснят соотношение между количеством вещества (протонов) и фотонов, т. е. значение числа В/γ = 10- 8 ÷ 10-9 (отношение числа протонов к числу фотонов в единице объема), которое в настоящее время известно только из наблюдений. Единственным предположением при этом будет однородное и изотропное расширение Вселенной «по Фридману», начиная с сингулярного состояния. В развитии теории активное участие принимает Вайнберг.

Конкретно наиболее вероятным считается следующий механизм распада протона, связанный с предположением о существовании очень тяжелых дробнозаряженных скалярных (т. е. со спином нуль) Х-частиц. Их масса в 1014 раз больше массы протона, а заряд равен +4/Зе или —4/Зе, где е — элементарный заряд (заряд протона). Эти частицы могут распадаться по двум каналам каждая:

Здесь q — кварки; — антикварки; l — лептоны (заряженные!); — антилептоны. В первом канале для X+ фигурируют два кварка с зарядом +2/Зе каждый, во втором канале античастица кварка, имеющего заряд - 1/Зе. Следовательно, заряд во втором канале равен +1/Зе, а заряд равен . Таким образом, электрический заряд сохраняется точно. Однако барионный заряд, получающийся в двух каналах, различен. Напомним, что барион состоит из трех кварков и барионный заряд кварка равен 1/3; барионный заряд протона равен 1 по определению.

При высокой температуре (выше пороговой температуры для рождения Х- частиц) частицы X находятся в равновесии. Однако при расширении и охлаждении распад Х-частиц отстает и на определенной стадии X + и Х- распадаются в неравновесных условиях. При этом из-за асимметрии частиц и античастиц образуется несколько больше кварков по сравнению с количеством антикварков. При дальнейшем охлаждении кварки и антикварки соединяются в барионы, антибарионы и мезоны, и возникает избыток барионов.

С другой стороны, распад протонов в настоящее время происходит через промежуточное образование частицы X:

Первый шаг процесса есть обращение того процесса (X → 2q), который написан выше. Так как X — очень тяжелая частица, то образоваться она может лишь на краткое мгновение (как говорят физики — «виртуально»), наблюдать можно лишь конечные продукты распада

Вероятность процесса мала именно потому, что велика масса X, образующая энергетический барьер на пути реакции. В ближайшие 20–30 лет прямое наблюдение Х-частицы исключено, однако мы надеемся, что распад протона будет наблюден значительно раньше.

ДОПОЛНЕНИЕ 7. О КОНЦЕНТРАЦИИ И ПЛОТНОСТИ

НЕЙТРИНО ВО ВСЕЛЕННОЙ

При высокой температуре, выше 1010 К, нейтрино находятся в термодинамическом равновесии с электронами, позитронами и фотонами. Равновесная концентрация нейтрино убывает с понижением температуры пропорционально кубу температуры. Этот закон убывания такой же, как и у фотонов, так как нейтрино либо вовсе не имеют массы покоя, как фотоны, либо масса их мала по сравнению с энергией при высокой температуре. Поэтому соотношение между числом нейтрино и фотонов в этот период не зависит от силы взаимодействия и, таким образом, неверно, что нейтрино сохраняются вследствие того, что они слабо взаимодействуют и сечение их аннигиляции мало. Если бы нейтрино взаимодействовали сильнее (что в действительности имеет место при температуре выше 1010 К), то аннигиляция нейтрино и антинейтрино с превращением их, например, в фотоны происходила бы чаще. Однако одновременно усилился бы и обратный процесс превращения фотонов в пары нейтрино и антинейтрино. Концентрация нейтрино в термодинамическом равновесии, приблизительно равная концентрации фотонов, при этом не изменилась бы. Имея в виду, что позже, после аннигиляции электронов и позитронов, температура нейтрино на самом деле будет даже несколько ниже температуры излучения, усиление взаимодействия привело бы даже к некоторому увеличению концентрации нейтрино за счет уменьшения концентрации фотонов. Сказанное выше относится к нейтрино, относительно которых предполагается, что масса покоя равна нулю, скорость равна скорости света и энергия равна импульсу, умноженному на скорость света. Термодинамические свойства таких безмассовых нейтрино мало отличаются от свойств фотонов.

Современная теория не исключает возможного существования тяжелых нейтрино с отличной от нуля массой покоя. Надо сказать, что из лабораторных опытов определить массы нейтрино удается с трудом и неточно. До недавнего времени, до 1980 года, известны были лишь верхние пределы массы нейтрино различного типа. Лабораторные опыты по распаду трития давали для массы покоя электронного нейтрино верхний предел 2 < 60 или 40 эВ, т. е. m < 10-4mе ~ 10-31 г. Для мюонных нейтрино можно утверждать только, что их масса покоя меньше 2 миллионов электронвольт, т. е. меньше учетверенной массы электрона. Недавно (Перл, 1975 год) открыта заряженная тау-частица, тяжелый аналог электрона и мюона. Масса тау-частицы около 1800 миллионов электрон-вольт, т. е. она почти вдвое тяжелее протона. Естественно полагать, что при распаде этой заряженной частицы образуются соответствующие ей тау-нейтрино. Лабораторные опыты не исключают того, что масса покоя тау-нейтрино отлична от нуля, и дают только, что эта масса меньше 500 миллионов электронвольт.

С.С. Герштейн и Я.Б. Зельдович (1966 год) показали, что космологические соображения ограничивают массу покоя электронного и мюонного нейтрино значением меньше 100–200 эВ. Последующие авторы уточняли эти соображения и утверждали, что масса нейтрино меньше 10 эВ. К тем же выводам для тау-нейтрино пришли независимо Бенжамен Ли и Вайнберг в США и М.И. Высоцкий, А.Д. Долгов и Я.Б. Зельдович в СССР.

В последнее время в Москве, в Институте теоретической и экспериментальной физики В.А. Любимов, Е.Г. Новиков, В.З. Нозик, Е.Ф. Третьяков и В.С. Козик провели новое более точное исследование распада трития и пришли к выводу, что электронное нейтрино с большой вероятностью имеет массу покоя в пределах между 15 и 45 эВ. За рубежом появились указания на так называемые нейтринные осцилляции,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату