скрученные справа налево по букве Z и скрученные слева направо по букве S. Имеется в виду длинный средний элемент буквы, направленный вдоль волокон каната. Расположение этих элементов в буквах зеркально по отношению друг к другу, что в той же мере относится и к соответствующим канатам.
Впрочем, если вы станете разглядывать вашу бельевую веревку, может оказаться, что она вообще не свита, а сплетена. Витые канаты под нагрузкой растягиваются, а сплетенные почти нет. (Бельевая веревка, которая растягивается, когда на нее повесят мокрое белье, не очень-то удобна!) Интересно, кстати, что и улитка завивает свой домик Z-образным витком.
В специальной книге о морских узлах мы находим около 4000 различных задач на завязывание канатов. Многие из этих узлов очень привлекательны на вид, но безнадежно асимметричны.
На картинках, изображающих старинные парусные корабли, видно, как матросы карабкаются на мачты по веревочным лестницам. У моряков это называется «взбираться по вантам». Ванты - это длинные канаты или тросы, которые тянутся от бортов корабля к мачте. К ним крепятся веревочные «перекладины». Эти короткие отрезки снастей должны быть прикреплены «намертво» (ни в коем случае не узлом «плоский штык»!). Как выглядит подобное закрепление, показано на рисунке. На первый взгляд оно кажется симметричным, однако это не так. Такое же впечатление производят и всевозможные декоративные узлы. Их можно встретить и в художественных изделиях, и на военном мундире.
Морской узел «плоский штык» дает нам еще один прекрасный пример симметрии. Здесь необходимо рассматривать не только симметрию формы, но и симметрию нагрузки. Наш перекрестный узел можно завязать (правильно!) таким образом, что вначале связываются между собой концы каната, которые впоследствии должны испытывать нагрузку. Но можно завязать его и так, что нагруженный конец будет соединен со свободным, ненагруженным («самораспускающийся» узел). В.завязанном виде оба узла практически неразличимы. Однако если нагрузить неверно завязанный узел, то он не станет держать. Как говорят моряки, узел «разъедется».
Именно его и используют в своих представлениях фокусники и иллюзионисты. Раньше, когда на кораблях еще существовали гамаки, всегда находились услужливые помощники крепить новичку его гамак. Естественно, среди ночи доверчивый новичок оказывался на полу.
Математикам и инженерам нередко приходится заниматься узлами и решать связанные с ними задачи. Теоретически интересно знать, какие существуют типы узлов. Но практиков волнует иной вопрос: как создать транспортный узел для беспрепятственного движения потоков автомашин или людей. Такого рода «узлы» можно видеть на топологической схеме наземного и подземного транспорта Берлина.
Существуют даже патенты на узлы. Имеется, например, американский патент, основанный на специальном узле - ленте Мёбиуса. Немецкий математик Август Фердинанд Мёбиус (1790-1868), перекрутив один раз плоскую ленту под углом 180°, склеил оба ее конца. Эта лента обладает удивительным свойством. Если мы, коснувшись пальцем одной из ее сторон (заметим которой), будем скользить им вдоль по поверхности, то обнаружим, что у этой ленты существует только одна поверхность (не перекрученная таким образом лента, естественно, имеет две поверхности). На этом свойстве и основан патент. При использовании приводного ремня (говорится в патентном описании) его внутренняя сторона, пробегающая над ведущим и ведомым колесами, со временем снашивается и становится непригодной. При использовании ленты Мёбиуса по существу исчезает разница между внутренней и внешней поверхностью и износ ремня соответственно намного уменьшается. Собственно, это и было запатентовано.
Если сделать ленту Мёбиуса прозрачной и нанести на нее какой-нибудь значок, скажем букву N, то обнаружится, что противолежащие фигуры соотносятся как изображение и его зеркальное отражение. Это весьма любопытно, учитывая, что «прямая» и «противолежащая» буквы находятся на одной стороне ленты! Ведь у ленты вообще всего одна поверхность.
При конструировании сложных пересечений важно знать одно свойство узлов, которое мы выведем с помощью эксперимента. Нарисуйте любой транспортный узел. Он может быть запутанным и неправильным. Пометьте только каждое пересечение буквой, разумеется, в каждом случае разной. Теперь ведите карандашом или пальцем по вашему рисунку в направлении, обратном тому, в каком вы рисовали. И всякий раз, проходя пересечение, записывайте соответствующую букву. Чтобы результат (который мы стремимся найти) был нагляднее, записывайте буквы в два ряда: либо слева направо, либо сверху вниз. Важно только, чтобы вы чередовали перекрестки (в зависимости от того, проходит улица над или под другой). Причем не играет роли, каким вы приняли первое пересечение - верхним или нижним. Когда табличка будет готова и вы как следует проверите ее, то обнаружите, что каждая буква, обозначающая перекресток, встречается в каждом из рядов по одному разу.
Представьте себе, что вы должны спроектировать систему светофоров, регулирующих проезд транспорта. В одном ряду окажутся все светофоры, включенные на зеленый свет, в то время как все светофоры другого ряда должны быть включены на красный.
Фокусники-любители используют знание теории узлов для изящного «эксперимента по чтению мыслей». Вы просите нарисовать подобный узел и обозначить его буквами (не подглядывая), а потом предлагаете объехать препятствие, называя буквы (которые фокусник записывает по известной уже схеме). В каком-нибудь месте два перекрестка «путаются». И фокусник, «читая» мысли, называет встретившиеся буквы. Как легко проверить, перепутавшиеся буквы дважды попадутся в одном ряду.
В заключение этого раздела еще один вопрос: а что произойдет, если ленту Мёбиуса разрезать вдоль? В случае простой, не перевернутой ленты это ясно: получатся две новые ленты, которые будут вдвое уже первой. Что же случится с лентой Мёбиуса, которую мы предварительно перекрутили, прежде чем склеить ее концы, трудно и представить! Если после одного поворота уже «исчезла» одна сторона, то в этом случае можно ждать чего угодно. Сформулируем вопрос несколько иначе: что случится, если владелец запатентованной ременной передачи разрежет ее вдоль, чтобы из экономии получить две ременные передачи? Опыт подсказывает нам, что двух новых лент не получится. Возникнет замкнутая лента, вдвое большей длины. Она, хотя и перевита, но, как всякая нормальная лента, снова имеет две стороны.
ПЕРЕВОЗКА МОЛОКА И ПОЛ В ВАННОЙ
Перелистните, пожалуйста, несколько страниц назад и еще раз взгляните на пять Платоновых тел. Только эти пять тел (повторим это еще раз) можно построить из одинаковых правильных плоских фигур - граней.
Тетраэдр нам знаком из повседневной жизни. В пакетах-тетраэдрах мы покупаем молочные продукты. Некоторое время назад дискутировался вопрос, почему для этих целей использует-се именно тетраэдр, а не гексаэдр, то есть куб. Ведь куб имеет наименьшую (после шара) поверхность по отношению к объему. Поэтому при такой упаковке для того же объема молока понадобилось бы меньше упаковочного материала, чем при упаковке в тетраэдры. Однако если мы посмотрим на развертки обоих тел, то увидим, что тетраэдры можно складывать из непрерывной движущейся ленты. А вот кубы из простой ленты не получатся. Два квадратика всегда будут торчать, так что обрезков всегда будет оставаться гораздо больше, чем при склеивании пакетов-тетраэдров.
Этот небольшой пример позволяет проанализировать часто встречающуюся ошибку. Нередко в